Franco Ka Wah Leung, Lin Schwarzkopf, Slade Allen-Ankins
{"title":"Advancing invasive species monitoring: A free tool for detecting invasive cane toads using continental-scale data","authors":"Franco Ka Wah Leung, Lin Schwarzkopf, Slade Allen-Ankins","doi":"10.1016/j.ecoinf.2025.103172","DOIUrl":null,"url":null,"abstract":"<div><div>Invasive species pose a significant threat to global biodiversity and ecosystem health, necessitating effective monitoring tools for early detection and management. Here, we present the development and assessment of a user-friendly and transferable monitoring tool for the invasive cane toad (<em>Rhinella marina</em>) using passive acoustic monitoring (PAM) and machine learning algorithms. Leveraging a continental-scale PAM dataset (Australian Acoustic Observatory), we trained a cane toad classifier using the BirdNET algorithm, a convolutional neural network architecture capable of identifying acoustic events. We validated thousands of BirdNET predictions across Australia, and our classifier achieved over 90 % accuracy even at many sites outside the areas from which the training data were obtained. Additionally, because cane toads typically call for long periods, we significantly enhanced detection accuracy by incorporating contextual information from time-series data, essentially checking if other calls occurred around each detection (an optimized threshold approach using conditional inference trees). This method substantially reduced false positives and improved overall performance in cane toad detection at sites across Australia. Overall, our method will allow others to develop accurate and precise automated acoustic monitoring tools tailored to their situation, with minimal training data, addressing the critical need for accessible solutions in biodiversity monitoring, control of invasive species and conservation.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"89 ","pages":"Article 103172"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001815","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive species pose a significant threat to global biodiversity and ecosystem health, necessitating effective monitoring tools for early detection and management. Here, we present the development and assessment of a user-friendly and transferable monitoring tool for the invasive cane toad (Rhinella marina) using passive acoustic monitoring (PAM) and machine learning algorithms. Leveraging a continental-scale PAM dataset (Australian Acoustic Observatory), we trained a cane toad classifier using the BirdNET algorithm, a convolutional neural network architecture capable of identifying acoustic events. We validated thousands of BirdNET predictions across Australia, and our classifier achieved over 90 % accuracy even at many sites outside the areas from which the training data were obtained. Additionally, because cane toads typically call for long periods, we significantly enhanced detection accuracy by incorporating contextual information from time-series data, essentially checking if other calls occurred around each detection (an optimized threshold approach using conditional inference trees). This method substantially reduced false positives and improved overall performance in cane toad detection at sites across Australia. Overall, our method will allow others to develop accurate and precise automated acoustic monitoring tools tailored to their situation, with minimal training data, addressing the critical need for accessible solutions in biodiversity monitoring, control of invasive species and conservation.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.