Analytical solution to the Lippmann–Schwinger equation in the spherical space

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Anderson L. de Jesus, Rafael M. Fortiny, Alexandre G.M. Schmidt
{"title":"Analytical solution to the Lippmann–Schwinger equation in the spherical space","authors":"Anderson L. de Jesus,&nbsp;Rafael M. Fortiny,&nbsp;Alexandre G.M. Schmidt","doi":"10.1016/j.aop.2025.170048","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this work is to obtain an analytical solution to the Lippmann–Schwinger equation for a scalar particle, bounded in a two-dimensional space with constant positive curvature, called the spherical space. Making use of the thin-layer quantization method, we present the free particle wave function solving the Schrödinger equation on the spherical space using the Laplace–Beltrami operator. We use the Green’s function on the spherical space as the kernel in the Lippmann–Schwinger equation and solve it exactly for the boundary-wall potential, modeled as Dirac delta distributions, considering single, double and finding the generalized result for multiple consecutive barriers. The probability densities are presented graphically.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"479 ","pages":"Article 170048"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625001290","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to obtain an analytical solution to the Lippmann–Schwinger equation for a scalar particle, bounded in a two-dimensional space with constant positive curvature, called the spherical space. Making use of the thin-layer quantization method, we present the free particle wave function solving the Schrödinger equation on the spherical space using the Laplace–Beltrami operator. We use the Green’s function on the spherical space as the kernel in the Lippmann–Schwinger equation and solve it exactly for the boundary-wall potential, modeled as Dirac delta distributions, considering single, double and finding the generalized result for multiple consecutive barriers. The probability densities are presented graphically.
球面空间Lippmann-Schwinger方程的解析解
本工作的目的是获得一个标量粒子的Lippmann-Schwinger方程的解析解,该标量粒子被限定在一个具有恒定正曲率的二维空间中,称为球面空间。利用薄层量子化方法,利用Laplace-Beltrami算子给出了球面空间上求解Schrödinger方程的自由粒子波函数。我们将球空间上的格林函数作为Lippmann-Schwinger方程的核,精确地求解了以Dirac三角洲分布为模型的边界壁势,考虑了单势、双势,并找到了多个连续势垒的广义结果。概率密度用图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信