Tension-compression anisotropic cohesion model for the interlayer interface of 3D-printed concrete compression specimens

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ning An , Huai Wang , Peijun Wang , Chuanhua Xu , Mei Liu
{"title":"Tension-compression anisotropic cohesion model for the interlayer interface of 3D-printed concrete compression specimens","authors":"Ning An ,&nbsp;Huai Wang ,&nbsp;Peijun Wang ,&nbsp;Chuanhua Xu ,&nbsp;Mei Liu","doi":"10.1016/j.jobe.2025.112800","DOIUrl":null,"url":null,"abstract":"<div><div>Several issues exist with the cohesive model used to simulate the interlayer characteristics of 3D-printed concrete compression specimens: the accuracy of anisotropic simulation is low, cohesion model parameters are difficult to obtain, and the study of these parameters on anisotropic effects is insufficient. This study proposes a tension-compression anisotropic cohesive model to address the limitation of the traditional isotropic model, which lacks dedicated compressive stiffness when applied to printed concrete compression specimens. To obtain suitable model parameters, a parameter inversion framework is proposed, utilizing compression test data from printed specimens. To evaluate the impact of the cohesive model parameters, the SHapley Additive exPlanations method is employed to explore their effects on anisotropy. Results demonstrate that the framework accurately captures the anisotropy of 3D-printed concrete, achieving a relative error below 0.5 %. Parametric analysis reveals that when loaded in the horizontal printing direction, the key parameter of the cohesive model is the compressive stiffness, whereas when loaded in the vertical direction, the key parameters are the compressive stiffness and shear stiffness. The cohesion model, inversion framework, and findings provide valuable research approaches and a more comprehensive understanding of the compression performance of 3D-printed concrete.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"107 ","pages":"Article 112800"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235271022501037X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several issues exist with the cohesive model used to simulate the interlayer characteristics of 3D-printed concrete compression specimens: the accuracy of anisotropic simulation is low, cohesion model parameters are difficult to obtain, and the study of these parameters on anisotropic effects is insufficient. This study proposes a tension-compression anisotropic cohesive model to address the limitation of the traditional isotropic model, which lacks dedicated compressive stiffness when applied to printed concrete compression specimens. To obtain suitable model parameters, a parameter inversion framework is proposed, utilizing compression test data from printed specimens. To evaluate the impact of the cohesive model parameters, the SHapley Additive exPlanations method is employed to explore their effects on anisotropy. Results demonstrate that the framework accurately captures the anisotropy of 3D-printed concrete, achieving a relative error below 0.5 %. Parametric analysis reveals that when loaded in the horizontal printing direction, the key parameter of the cohesive model is the compressive stiffness, whereas when loaded in the vertical direction, the key parameters are the compressive stiffness and shear stiffness. The cohesion model, inversion framework, and findings provide valuable research approaches and a more comprehensive understanding of the compression performance of 3D-printed concrete.
三维打印混凝土压缩试件层间界面拉压各向异性黏聚模型
用于模拟3d打印混凝土压缩试件层间特性的黏结模型存在着各向异性模拟精度低、黏结模型参数难以获取以及这些参数对各向异性影响的研究不足等问题。本文提出了一种拉-压各向异性内聚模型,以解决传统各向同性模型在应用于打印混凝土压缩试件时缺乏专用压缩刚度的局限性。为了获得合适的模型参数,提出了一种利用打印试件压缩试验数据的参数反演框架。为了评价内聚模型参数对各向异性的影响,采用SHapley加性解释方法探讨了参数对各向异性的影响。结果表明,该框架准确地捕捉了3d打印混凝土的各向异性,相对误差低于0.5%。参数分析表明,在水平打印方向加载时,黏结模型的关键参数是压缩刚度,而在垂直方向加载时,黏结模型的关键参数是压缩刚度和剪切刚度。内聚模型、反演框架和研究结果提供了有价值的研究方法,并对3d打印混凝土的压缩性能有了更全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信