{"title":"A J-test for spatial autoregressive binary models","authors":"Gianfranco Piras , Mauricio Sarrias","doi":"10.1016/j.spasta.2025.100903","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial autoregressive binary models are well established in spatial statistics and econometric literature. Recently, different estimation methods have been proposed that account for logistic as well as probit regressions. In spatial models the choice of the spatial weighting matrix is crucial to reflect the amount of correlation in the data. This article proposes a simple <span><math><mi>J</mi></math></span>-test procedure for spatial autoregressive binary model. Since the <span><math><mi>J</mi></math></span>-test is a non-nested test, it can be used, among other things, to test the specification of the spatial weighting matrix. The <span><math><mi>J</mi></math></span>-test is based on augmenting the null model with the predictor from the alternative model(s). After defining these predictors, we develop the theory and derive the steps for the <span><math><mi>J</mi></math></span>-test. We also evaluate the finite sample properties in the context of a Monte Carlo experiment. An empirical application on firms’ decisions to reopen in the aftermath of Hurricane Katrina for New Orleans is also presented.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100903"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000259","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial autoregressive binary models are well established in spatial statistics and econometric literature. Recently, different estimation methods have been proposed that account for logistic as well as probit regressions. In spatial models the choice of the spatial weighting matrix is crucial to reflect the amount of correlation in the data. This article proposes a simple -test procedure for spatial autoregressive binary model. Since the -test is a non-nested test, it can be used, among other things, to test the specification of the spatial weighting matrix. The -test is based on augmenting the null model with the predictor from the alternative model(s). After defining these predictors, we develop the theory and derive the steps for the -test. We also evaluate the finite sample properties in the context of a Monte Carlo experiment. An empirical application on firms’ decisions to reopen in the aftermath of Hurricane Katrina for New Orleans is also presented.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.