Infinitely many solutions for an elliptic equation in divergent form with critical Hardy–Sobolev exponent

Q1 Mathematics
Khalid Benlhachmi, Khalid Bouabid, Rachid Echarghaoui, Hicham Hadad
{"title":"Infinitely many solutions for an elliptic equation in divergent form with critical Hardy–Sobolev exponent","authors":"Khalid Benlhachmi,&nbsp;Khalid Bouabid,&nbsp;Rachid Echarghaoui,&nbsp;Hicham Hadad","doi":"10.1016/j.padiff.2025.101179","DOIUrl":null,"url":null,"abstract":"<div><div>By using concentration estimates, Fountain Theorem and its Dual form we prove the existence of two disjoint and infinite sets of solutions for the following elliptic equation in divergent form with critical Hardy–Sobolev exponent and concave–convex nonlinearity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mo>div</mo><mrow><mo>(</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>λ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>The problem is considered in an open bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> under certain assumptions on <span><math><mi>a</mi></math></span> and <span><math><mi>Q</mi></math></span>.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101179"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

By using concentration estimates, Fountain Theorem and its Dual form we prove the existence of two disjoint and infinite sets of solutions for the following elliptic equation in divergent form with critical Hardy–Sobolev exponent and concave–convex nonlinearity div(a(x)Du)=Q(x)|u|2(s)2u|x|s+λ|u|q2uxΩ,u=0onΩ.The problem is considered in an open bounded domain ΩRN under certain assumptions on a and Q.
一类具有临界Hardy-Sobolev指数的发散型椭圆方程的无穷多解
利用浓度估计、Fountain定理及其对偶形式,证明了具有临界Hardy-Sobolev指数和凹凸非线性的发散型椭圆方程- div(a(x)Du)=Q(x)|u|2∗(s) - 2u|x|s+λ|u| Q−2ux∈Ω,u=0on∂Ω的两个不相交无穷解集的存在性。在a和Q上的某些假设下,在开放有界域Ω∧RN中考虑这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信