Debora B. Scariot , Austeja Staneviciute , Rayanne R.B. Machado , Simseok A. Yuk , Yu-Gang Liu , Swagat Sharma , Sultan Almunif , El Hadji Arona Mbaye , Celso Vataru Nakamura , David M. Engman , Evan A. Scott
{"title":"Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology","authors":"Debora B. Scariot , Austeja Staneviciute , Rayanne R.B. Machado , Simseok A. Yuk , Yu-Gang Liu , Swagat Sharma , Sultan Almunif , El Hadji Arona Mbaye , Celso Vataru Nakamura , David M. Engman , Evan A. Scott","doi":"10.1016/j.biomaterials.2025.123358","DOIUrl":null,"url":null,"abstract":"<div><div>The causative agent of Chagas disease, the protozoan <em>Trypanosoma cruzi</em>, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a <em>T. cruzi</em>-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce <em>in vivo</em> trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by <em>T. cruzi</em> infection<em>,</em> this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"322 ","pages":"Article 123358"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002777","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The causative agent of Chagas disease, the protozoan Trypanosoma cruzi, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a T. cruzi-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce in vivo trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by T. cruzi infection, this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.