Unveiling optical FoMs of DSTC-VTFET for visible spectrum photosensor

IF 3 Q2 PHYSICS, CONDENSED MATTER
Raj Kumar , Shreyas Tiwari , Girdhar Gopal , Arun Kishor Johar , Rajendra Mitharwal , Tarun Varma
{"title":"Unveiling optical FoMs of DSTC-VTFET for visible spectrum photosensor","authors":"Raj Kumar ,&nbsp;Shreyas Tiwari ,&nbsp;Girdhar Gopal ,&nbsp;Arun Kishor Johar ,&nbsp;Rajendra Mitharwal ,&nbsp;Tarun Varma","doi":"10.1016/j.micrna.2025.208183","DOIUrl":null,"url":null,"abstract":"<div><div>This study used TCAD simulations to assess the electrical properties of a symmetrical vertical TFET with double germanium source regions and a T-shaped silicon channel (DSTC-VTFET) for very low power and photodetector devices. Enhanced switching performance is achieved through the inclusion of highly doped N<sup>+</sup> epitaxial layers adjacent to the germanium sources. The photodetector's spectral response is evaluated under SiO<sub>2</sub> and HfO<sub>2</sub> gate oxides across varying wavelengths within the near-visible spectrum (300–700 nm), with optimized pocket doping levels. The DSTC-VTFET shows remarkable enhancements in ON-current (I<sub>on</sub>), subthreshold swing (SS<sub>avg</sub>), and dark current (I<sub>Dark</sub>). These improvements boost optical performance metrics like responsivity (R), quantum efficiency (ƞ), signal-to-noise ratio (SNR), and spectral sensitivity (S<sub>n</sub>). Devices with HfO<sub>2</sub> show superior carrier transport tunneling at the source-channel interface, achieving better I<sub>on</sub> and SS<sub>avg</sub> than SiO<sub>2</sub>, particularly in the wavelength range of 300–700 nm. A reliability study, accounting for the influence of interface-trap impurities at the oxide-semiconductor boundary, indicates little SNR decrease when using SiO<sub>2</sub>.The device demonstrates impressive performance with f<sub>T</sub> of 175.42 GHz, SS<sub>avg</sub> of 23.28 mV/dec, I<sub>on</sub> of 8.38 × 10<sup>−8</sup> A/μm, SNR of 90 dB, quantum efficiency reaching 85 %, and a spectral sensitivity of approximately 2 × 10<sup>4</sup>, showcasing its effectiveness in photodetection.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208183"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study used TCAD simulations to assess the electrical properties of a symmetrical vertical TFET with double germanium source regions and a T-shaped silicon channel (DSTC-VTFET) for very low power and photodetector devices. Enhanced switching performance is achieved through the inclusion of highly doped N+ epitaxial layers adjacent to the germanium sources. The photodetector's spectral response is evaluated under SiO2 and HfO2 gate oxides across varying wavelengths within the near-visible spectrum (300–700 nm), with optimized pocket doping levels. The DSTC-VTFET shows remarkable enhancements in ON-current (Ion), subthreshold swing (SSavg), and dark current (IDark). These improvements boost optical performance metrics like responsivity (R), quantum efficiency (ƞ), signal-to-noise ratio (SNR), and spectral sensitivity (Sn). Devices with HfO2 show superior carrier transport tunneling at the source-channel interface, achieving better Ion and SSavg than SiO2, particularly in the wavelength range of 300–700 nm. A reliability study, accounting for the influence of interface-trap impurities at the oxide-semiconductor boundary, indicates little SNR decrease when using SiO2.The device demonstrates impressive performance with fT of 175.42 GHz, SSavg of 23.28 mV/dec, Ion of 8.38 × 10−8 A/μm, SNR of 90 dB, quantum efficiency reaching 85 %, and a spectral sensitivity of approximately 2 × 104, showcasing its effectiveness in photodetection.
揭示用于可见光谱光敏器的DSTC-VTFET光学结构
本研究使用TCAD模拟来评估具有双锗源区和t形硅沟道的对称垂直TFET (DSTC-VTFET)的电学性能,用于极低功率和光电探测器器件。通过在锗源附近加入高掺杂的N+外延层,实现了增强的开关性能。在近可见光谱(300-700 nm)不同波长的SiO2和HfO2栅极氧化物下,对光电探测器的光谱响应进行了评估,并优化了口袋掺杂水平。DSTC-VTFET在on电流(Ion)、亚阈值摆幅(SSavg)和暗电流(IDark)方面表现出显著的增强。这些改进提高了光学性能指标,如响应度(R)、量子效率()、信噪比(SNR)和光谱灵敏度(Sn)。与SiO2相比,含HfO2的器件在源-通道界面处表现出更好的载流子传输隧道,获得了更好的离子和SSavg,特别是在300-700 nm波长范围内。考虑到界面陷阱杂质在氧化物-半导体边界处的影响,可靠性研究表明,使用SiO2时信噪比几乎没有下降。该器件性能优异,fT为175.42 GHz, SSavg为23.28 mV/dec,离子为8.38 × 10−8 A/μm,信噪比为90 dB,量子效率达到85%,光谱灵敏度约为2 × 104,显示了其在光探测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信