Micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide in lithium chloride, potassium chloride, magnesium chloride and calcium chloride solutions

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Wenting Cheng, Qianqian Li, Ying Zhai, Huaigang Cheng, Fangqin Cheng
{"title":"Micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide in lithium chloride, potassium chloride, magnesium chloride and calcium chloride solutions","authors":"Wenting Cheng,&nbsp;Qianqian Li,&nbsp;Ying Zhai,&nbsp;Huaigang Cheng,&nbsp;Fangqin Cheng","doi":"10.1016/j.cjche.2024.12.019","DOIUrl":null,"url":null,"abstract":"<div><div>The micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide (CTAB) in single lithium chloride (LiCl), potassium chloride (KCl), magnesium chloride (MgCl<sub>2</sub>) and calcium chloride (CaCl<sub>2</sub>) solutions were investigated at 288.15−318.15 K. Result showed that the critical micelle concentration (CMC) values of CTAB in all solutions decreased to a minimum value around 298.15 K and then increased with further increasing the temperature. In all cases, the CMC values decreased with increasing salt concentration at each temperature. Additionally, the introduction of any single salt resulted in a reduction of CMC values for CTAB, attributed to the combined effects of counterions and entropy-driven interactions. The observed trend for CMC values was as follows: <span><math><mrow><msub><mtext>CMC</mtext><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></msub></mrow></math></span> &gt; <span><math><mrow><msub><mtext>CMC</mtext><mtext>KCl</mtext></msub></mrow></math></span> &gt; <span><math><mrow><msub><mtext>CMC</mtext><mtext>LiCl</mtext></msub></mrow></math></span> &gt; <span><math><mrow><msub><mtext>CMC</mtext><msub><mtext>CaCl</mtext><mn>2</mn></msub></msub><mo>&gt;</mo><msub><mtext>CMC</mtext><msub><mtext>MgCl</mtext><mn>2</mn></msub></msub></mrow></math></span>. Furthermore, standard thermodynamic parameters, including standard free energy of micellization (<span><math><mrow><mo>Δ</mo><msubsup><mi>G</mi><mi>m</mi><mn>0</mn></msubsup></mrow></math></span>), standard enthalpy of micellization (<span><math><mrow><mo>Δ</mo><msubsup><mi>H</mi><mi>m</mi><mn>0</mn></msubsup></mrow></math></span>) and standard entropy of micellization (<span><math><mrow><mo>Δ</mo><msubsup><mi>S</mi><mi>m</mi><mn>0</mn></msubsup></mrow></math></span>), were calculated based on the obtained CMC values. The negative values of <span><math><mo>Δ</mo><msubsup><mi>G</mi><mi>m</mi><mn>0</mn></msubsup></math></span> indicated that the formation of CTAB micelles was a spontaneous behavior. The variations in <span><math><mrow><mo>Δ</mo><msubsup><mi>H</mi><mi>m</mi><mn>0</mn></msubsup></mrow></math></span> and <span><math><mrow><mo>Δ</mo><msubsup><mi>S</mi><mi>m</mi><mn>0</mn></msubsup></mrow></math></span> suggested that micellization was primarily entropy-driven at temperatures between 288.15 and 298.15 K, while it was influenced by both entropy and enthalpy from 298.15 to 318.15 K. Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM) were employed to further explore the effects of salts on the micellization behavior of CTAB.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"81 ","pages":"Pages 95-104"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125000990","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide (CTAB) in single lithium chloride (LiCl), potassium chloride (KCl), magnesium chloride (MgCl2) and calcium chloride (CaCl2) solutions were investigated at 288.15−318.15 K. Result showed that the critical micelle concentration (CMC) values of CTAB in all solutions decreased to a minimum value around 298.15 K and then increased with further increasing the temperature. In all cases, the CMC values decreased with increasing salt concentration at each temperature. Additionally, the introduction of any single salt resulted in a reduction of CMC values for CTAB, attributed to the combined effects of counterions and entropy-driven interactions. The observed trend for CMC values was as follows: CMCH2O > CMCKCl > CMCLiCl > CMCCaCl2>CMCMgCl2. Furthermore, standard thermodynamic parameters, including standard free energy of micellization (ΔGm0), standard enthalpy of micellization (ΔHm0) and standard entropy of micellization (ΔSm0), were calculated based on the obtained CMC values. The negative values of ΔGm0 indicated that the formation of CTAB micelles was a spontaneous behavior. The variations in ΔHm0 and ΔSm0 suggested that micellization was primarily entropy-driven at temperatures between 288.15 and 298.15 K, while it was influenced by both entropy and enthalpy from 298.15 to 318.15 K. Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM) were employed to further explore the effects of salts on the micellization behavior of CTAB.

Abstract Image

十六烷基三甲基溴化铵在氯化锂、氯化钾、氯化镁和氯化钙溶液中的胶束行为和热力学性质
在288.15 ~ 318.15 K的温度下,研究了十六烷基三甲基溴化铵(CTAB)在单一氯化锂(LiCl)、氯化钾(KCl)、氯化镁(MgCl2)和氯化钙(CaCl2)溶液中的胶束行为和热力学性质。结果表明,CTAB在所有溶液中的临界胶束浓度(CMC)值在298.15 K左右减小到最小值,然后随着温度的进一步升高而增大。在所有情况下,CMC值随盐浓度的增加而降低。此外,由于反离子和熵驱动相互作用的共同作用,任何单一盐的引入都会导致CTAB的CMC值降低。CMC值的观测趋势如下:CMCKCl祝辞CMCLiCl祝辞CMCCaCl2> CMCMgCl2。根据得到的CMC值,计算了胶束自由能(ΔGm0)、胶束焓(ΔHm0)和胶束熵(ΔSm0)等标准热力学参数。ΔGm0的负值表明CTAB胶束的形成是自发的行为。ΔHm0和ΔSm0的变化表明,在288.15 ~ 298.15 K之间胶束化主要受熵驱动,而在298.15 ~ 318.15 K之间胶束化同时受熵和焓的影响。采用傅里叶变换红外光谱(FTIR)和透射电子显微镜(TEM)进一步研究了盐对CTAB胶束化行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信