NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential
{"title":"NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential","authors":"Muhammad Shahid Malik, Van The Le and Yu-Yen Ou*, ","doi":"10.1021/acs.jproteome.4c0088410.1021/acs.jproteome.4c00884","DOIUrl":null,"url":null,"abstract":"<p >Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are important for many physiological processes, and their dysfunction leads to diseases such as hypertension, diabetes, neurological disorders, and cancer. The NA_mCNN computational method highlights the functional diversity and significance of sodium transporters in membrane proteins using protein language model embeddings (PLMs) and multiple-window scanning deep learning models. This work investigates PLMs that include Tape, ProtTrans, ESM-1b-1280, and ESM-2-128 to achieve more accuracy in sodium transporter classification. Five-fold cross-validation and independent testing demonstrate ProtTrans embedding robustness. In cross-validation, ProtTrans achieved an AUC of 0.9939, a sensitivity of 0.9829, and a specificity of 0.9889, demonstrating its ability to distinguish positive and negative samples. In independent testing, ProtTrans maintained a sensitivity of 0.9765, a specificity of 0.9991, and an AUC of 0.9975, which indicates its high level of discrimination. This study advances the understanding of sodium transporter diversity and function, as well as their role in human pathophysiology. Our goal is to use deep learning techniques and protein language models for identifying sodium transporters to accelerate identification and develop new therapeutic interventions.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 5","pages":"2324–2335 2324–2335"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00884","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00884","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are important for many physiological processes, and their dysfunction leads to diseases such as hypertension, diabetes, neurological disorders, and cancer. The NA_mCNN computational method highlights the functional diversity and significance of sodium transporters in membrane proteins using protein language model embeddings (PLMs) and multiple-window scanning deep learning models. This work investigates PLMs that include Tape, ProtTrans, ESM-1b-1280, and ESM-2-128 to achieve more accuracy in sodium transporter classification. Five-fold cross-validation and independent testing demonstrate ProtTrans embedding robustness. In cross-validation, ProtTrans achieved an AUC of 0.9939, a sensitivity of 0.9829, and a specificity of 0.9889, demonstrating its ability to distinguish positive and negative samples. In independent testing, ProtTrans maintained a sensitivity of 0.9765, a specificity of 0.9991, and an AUC of 0.9975, which indicates its high level of discrimination. This study advances the understanding of sodium transporter diversity and function, as well as their role in human pathophysiology. Our goal is to use deep learning techniques and protein language models for identifying sodium transporters to accelerate identification and develop new therapeutic interventions.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".