Open-Source and FAIR Research Software for Proteomics

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yasset Perez-Riverol, Wout Bittremieux, William S. Noble, Lennart Martens, Aivett Bilbao, Michael R. Lazear, Bjorn Grüning, Daniel S. Katz, Michael J. MacCoss, Chengxin Dai, Jimmy K. Eng, Robbin Bouwmeester, Michael R. Shortreed, Enrique Audain, Timo Sachsenberg, Jeroen Van Goey, Georg Wallmann, Bo Wen, Lukas Käll* and William E. Fondrie, 
{"title":"Open-Source and FAIR Research Software for Proteomics","authors":"Yasset Perez-Riverol,&nbsp;Wout Bittremieux,&nbsp;William S. Noble,&nbsp;Lennart Martens,&nbsp;Aivett Bilbao,&nbsp;Michael R. Lazear,&nbsp;Bjorn Grüning,&nbsp;Daniel S. Katz,&nbsp;Michael J. MacCoss,&nbsp;Chengxin Dai,&nbsp;Jimmy K. Eng,&nbsp;Robbin Bouwmeester,&nbsp;Michael R. Shortreed,&nbsp;Enrique Audain,&nbsp;Timo Sachsenberg,&nbsp;Jeroen Van Goey,&nbsp;Georg Wallmann,&nbsp;Bo Wen,&nbsp;Lukas Käll* and William E. Fondrie,&nbsp;","doi":"10.1021/acs.jproteome.4c0107910.1021/acs.jproteome.4c01079","DOIUrl":null,"url":null,"abstract":"<p >Scientific discovery relies on innovative software as much as experimental methods, especially in proteomics, where computational tools are essential for mass spectrometer setup, data analysis, and interpretation. Since the introduction of SEQUEST, proteomics software has grown into a complex ecosystem of algorithms, predictive models, and workflows, but the field faces challenges, including the increasing complexity of mass spectrometry data, limited reproducibility due to proprietary software, and difficulties integrating with other omics disciplines. Closed-source, platform-specific tools exacerbate these issues by restricting innovation, creating inefficiencies, and imposing hidden costs on the community. Open-source software (OSS), aligned with the FAIR Principles (Findable, Accessible, Interoperable, Reusable), offers a solution by promoting transparency, reproducibility, and community-driven development, which fosters collaboration and continuous improvement. In this manuscript, we explore the role of OSS in computational proteomics, its alignment with FAIR principles, and its potential to address challenges related to licensing, distribution, and standardization. Drawing on lessons from other omics fields, we present a vision for a future where OSS and FAIR principles underpin a transparent, accessible, and innovative proteomics community.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 5","pages":"2222–2234 2222–2234"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c01079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c01079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific discovery relies on innovative software as much as experimental methods, especially in proteomics, where computational tools are essential for mass spectrometer setup, data analysis, and interpretation. Since the introduction of SEQUEST, proteomics software has grown into a complex ecosystem of algorithms, predictive models, and workflows, but the field faces challenges, including the increasing complexity of mass spectrometry data, limited reproducibility due to proprietary software, and difficulties integrating with other omics disciplines. Closed-source, platform-specific tools exacerbate these issues by restricting innovation, creating inefficiencies, and imposing hidden costs on the community. Open-source software (OSS), aligned with the FAIR Principles (Findable, Accessible, Interoperable, Reusable), offers a solution by promoting transparency, reproducibility, and community-driven development, which fosters collaboration and continuous improvement. In this manuscript, we explore the role of OSS in computational proteomics, its alignment with FAIR principles, and its potential to address challenges related to licensing, distribution, and standardization. Drawing on lessons from other omics fields, we present a vision for a future where OSS and FAIR principles underpin a transparent, accessible, and innovative proteomics community.

蛋白质组学的开源和公平研究软件
科学发现依赖于创新的软件和实验方法,特别是在蛋白质组学中,计算工具对质谱仪设置、数据分析和解释至关重要。自引入SEQUEST以来,蛋白质组学软件已经发展成为一个复杂的算法、预测模型和工作流程的生态系统,但该领域面临着挑战,包括质谱数据日益复杂,专有软件的可重复性有限,以及与其他组学学科集成的困难。闭源的、特定于平台的工具通过限制创新、创造低效率和对社区施加隐藏成本而加剧了这些问题。开源软件(OSS)与FAIR原则(可查找、可访问、可互操作、可重用)保持一致,通过促进透明度、可再现性和社区驱动的开发来提供解决方案,从而促进协作和持续改进。在本文中,我们探讨了OSS在计算蛋白质组学中的作用,它与FAIR原则的一致性,以及它在解决与许可、分发和标准化相关的挑战方面的潜力。借鉴其他组学领域的经验教训,我们提出了一个未来的愿景,在这个愿景中,OSS和FAIR原则支撑着一个透明的、可访问的和创新的蛋白质组学社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信