FeHf Binary Hydroxide/Oxide Nanostructures as Catalysts for Oxygen Evolution

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Biswaranjan D. Mohapatra*, Mateusz Szczerba, Joanna Czopor, Daniel Piecha, Marcin Pisarek and Grzegorz D. Sulka*, 
{"title":"FeHf Binary Hydroxide/Oxide Nanostructures as Catalysts for Oxygen Evolution","authors":"Biswaranjan D. Mohapatra*,&nbsp;Mateusz Szczerba,&nbsp;Joanna Czopor,&nbsp;Daniel Piecha,&nbsp;Marcin Pisarek and Grzegorz D. Sulka*,&nbsp;","doi":"10.1021/acsanm.5c0091210.1021/acsanm.5c00912","DOIUrl":null,"url":null,"abstract":"<p >We present pulsed electrodeposition (PED) of FeHf binary hydroxide/oxide (FeHf-BH) nanocomposites from aqueous electrolyte baths containing NO<sub>3</sub><sup>–</sup> ions. The deposition was carried out on a graphite foil at room temperature. This study, for the first time, demonstrated a controlled variation of Fe (5.9–49.9 avg. at. %) and Hf (2.4–58.7 avg. at. %) in the deposited materials. We showed the high scalability of FeHf-BH deposition by tuning the PED parameters. The morphology, composition, chemical structure, and oxidation states of metals in the materials were investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The deposited materials consist of agglomerated nanoparticles sized 50–150 nm. Thermal annealing studies revealed improved crystallinity, with the appearance of thermodynamically stable oxide phases of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>, and HfO<sub>2</sub> in the composites. The oxygen evolution activity of the materials was analyzed in an alkaline medium based on the Hf content. The optimized material containing 11.9 avg. at. % Hf demonstrated an OER onset potential of 1.63 V vs RHE, Tafel slope of 47 mV dec<sup>–1</sup>, and required only 470 mV overpotential to reach a 50 mA cm<sup>–2</sup> OER current. These PED strategies of designing FeHf-BH materials may open an avenue for designing other catalytically active and stable multimetallic hydroxides/oxides composites.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 17","pages":"8865–8875 8865–8875"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.5c00912","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00912","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present pulsed electrodeposition (PED) of FeHf binary hydroxide/oxide (FeHf-BH) nanocomposites from aqueous electrolyte baths containing NO3 ions. The deposition was carried out on a graphite foil at room temperature. This study, for the first time, demonstrated a controlled variation of Fe (5.9–49.9 avg. at. %) and Hf (2.4–58.7 avg. at. %) in the deposited materials. We showed the high scalability of FeHf-BH deposition by tuning the PED parameters. The morphology, composition, chemical structure, and oxidation states of metals in the materials were investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The deposited materials consist of agglomerated nanoparticles sized 50–150 nm. Thermal annealing studies revealed improved crystallinity, with the appearance of thermodynamically stable oxide phases of Fe3O4, Fe2O3, and HfO2 in the composites. The oxygen evolution activity of the materials was analyzed in an alkaline medium based on the Hf content. The optimized material containing 11.9 avg. at. % Hf demonstrated an OER onset potential of 1.63 V vs RHE, Tafel slope of 47 mV dec–1, and required only 470 mV overpotential to reach a 50 mA cm–2 OER current. These PED strategies of designing FeHf-BH materials may open an avenue for designing other catalytically active and stable multimetallic hydroxides/oxides composites.

FeHf二元氢氧化物/氧化物纳米结构作为析氧催化剂
研究了在含NO3 -离子的水溶液中脉冲电沉积(PED)氢氧化铁二元/氧化物(FeHf- bh)纳米复合材料。沉积是在室温下在石墨箔上进行的。本研究首次证实了铁的控制变异(平均5.9-49.9)。%)和Hf(平均2.4-58.7)。%)在沉积材料中。通过调整PED参数,证明了FeHf-BH沉积的高可扩展性。采用扫描电镜(SEM)、x射线能谱(EDS)、x射线衍射(XRD)、拉曼光谱(Raman spectroscopy)和x射线光电子能谱(XPS)研究了材料中金属的形貌、组成、化学结构和氧化态。沉积的材料由50 - 150nm大小的凝聚纳米颗粒组成。热退火研究表明,结晶度得到改善,复合材料中出现了Fe3O4、Fe2O3和HfO2等热力学稳定的氧化相。根据Hf含量分析了材料在碱性介质中的析氧活性。优化后的材料中含有11.9 avg. at。% Hf对RHE的OER起始电位为1.63 V, Tafel斜率为47 mV / 12,仅需470 mV过电位即可达到50 mA cm-2的OER电流。这些设计FeHf-BH材料的PED策略可能为设计其他催化活性和稳定的多金属氢氧化物/氧化物复合材料开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信