Li Zhao , Jian Chen , Jiaqi Wen , Yangjie Li , Yingjie Zhang , Qunyue Wu , Gang Yu
{"title":"Unveiling PFAS hazard in European surface waters using an interpretable machine-learning model","authors":"Li Zhao , Jian Chen , Jiaqi Wen , Yangjie Li , Yingjie Zhang , Qunyue Wu , Gang Yu","doi":"10.1016/j.envint.2025.109504","DOIUrl":null,"url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFAS), commonly known as “forever chemicals”, are ubiquitous in surface waters and potentially threaten human health and ecosystems. Despite extensive monitoring efforts, PFAS risk in European surface waters remain poorly understood, as performing PFAS analyses in all surface waters is remarkably challenging. This study developed two machine-learning models to generate the first maps depicting the concentration levels and ecological risks of PFAS in continuous surface waters across 44 European countries, at a 2-km spatial resolution. We estimated that nearly eight thousand individuals were affected by surface waters with PFAS concentrations exceeding the European Drinking Water guideline of 100 ng/L. The prediction maps identified surface waters with high ecological risk and PFAS concentration (>100 ng/L), primarily in Germany, the Netherlands, Portugal, Spain, and Finland. Furthermore, we quantified the distance to the nearest PFAS point sources as the most critical factor (14%–19%) influencing the concentrations and ecological risks of PFAS. Importantly, we determined a threshold distance (4.1–4.9 km) from PFAS point sources, below which PFAS hazards in surface waters could be elevated. Our findings advance the understanding of spatial PFAS pollution in European surface waters and provide a guideline threshold to inform targeted regulatory measures aimed at mitigating PFAS hazards.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"199 ","pages":"Article 109504"},"PeriodicalIF":10.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025002557","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS), commonly known as “forever chemicals”, are ubiquitous in surface waters and potentially threaten human health and ecosystems. Despite extensive monitoring efforts, PFAS risk in European surface waters remain poorly understood, as performing PFAS analyses in all surface waters is remarkably challenging. This study developed two machine-learning models to generate the first maps depicting the concentration levels and ecological risks of PFAS in continuous surface waters across 44 European countries, at a 2-km spatial resolution. We estimated that nearly eight thousand individuals were affected by surface waters with PFAS concentrations exceeding the European Drinking Water guideline of 100 ng/L. The prediction maps identified surface waters with high ecological risk and PFAS concentration (>100 ng/L), primarily in Germany, the Netherlands, Portugal, Spain, and Finland. Furthermore, we quantified the distance to the nearest PFAS point sources as the most critical factor (14%–19%) influencing the concentrations and ecological risks of PFAS. Importantly, we determined a threshold distance (4.1–4.9 km) from PFAS point sources, below which PFAS hazards in surface waters could be elevated. Our findings advance the understanding of spatial PFAS pollution in European surface waters and provide a guideline threshold to inform targeted regulatory measures aimed at mitigating PFAS hazards.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.