Electric-Field Tunable THz Emission via Quantum Geometry in Dirac Semimetal

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziqi Li, Dongsheng Yang, Fei Wang, Yingshu Yang, Yuanyuan Guo, Di Bao, Tingting Yin, Chi Sin Tang, Teddy Salim, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, Bo Peng, Marco Battiato, Hyunsoo Yang, Elbert E. M. Chia
{"title":"Electric-Field Tunable THz Emission via Quantum Geometry in Dirac Semimetal","authors":"Ziqi Li, Dongsheng Yang, Fei Wang, Yingshu Yang, Yuanyuan Guo, Di Bao, Tingting Yin, Chi Sin Tang, Teddy Salim, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, Bo Peng, Marco Battiato, Hyunsoo Yang, Elbert E. M. Chia","doi":"10.1021/acs.nanolett.5c01363","DOIUrl":null,"url":null,"abstract":"Electric-field manipulation of spin degrees of freedom is pivotal for next-generation spintronics, yet nonvolatile control at terahertz (THz) frequencies remains elusive. Here, we harness the quantum geometry of a Dirac semimetal, PtTe<sub>2</sub>, to achieve all-electrical tunability of THz spintronic emission under a constant magnetic field without field cycling or remanent magnetization. By integrating a ferroelectric substrate with a PtTe<sub>2</sub>/ferromagnetic heterobilayer, we electrically modulate the Fermi level and Berry curvature of PtTe<sub>2</sub>, thereby controlling its spin Hall conductivity in real time, yielding a 21% modulation of the THz emission amplitude. Density functional theory corroborates doping-driven shifts in Berry curvature that directly alter spin Hall conductivity, underscoring the key role of geometric phases in ultrafast spin–charge conversion. Our approach offers a low-complexity, energy-efficient, and nonvolatile route to tunable spin Hall THz devices, and we anticipate that these findings will open new avenues for harnessing quantum geometry in spin-based logic and ultrafast electronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"184 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01363","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric-field manipulation of spin degrees of freedom is pivotal for next-generation spintronics, yet nonvolatile control at terahertz (THz) frequencies remains elusive. Here, we harness the quantum geometry of a Dirac semimetal, PtTe2, to achieve all-electrical tunability of THz spintronic emission under a constant magnetic field without field cycling or remanent magnetization. By integrating a ferroelectric substrate with a PtTe2/ferromagnetic heterobilayer, we electrically modulate the Fermi level and Berry curvature of PtTe2, thereby controlling its spin Hall conductivity in real time, yielding a 21% modulation of the THz emission amplitude. Density functional theory corroborates doping-driven shifts in Berry curvature that directly alter spin Hall conductivity, underscoring the key role of geometric phases in ultrafast spin–charge conversion. Our approach offers a low-complexity, energy-efficient, and nonvolatile route to tunable spin Hall THz devices, and we anticipate that these findings will open new avenues for harnessing quantum geometry in spin-based logic and ultrafast electronics.

Abstract Image

狄拉克半金属中量子几何的电场可调谐太赫兹发射
自旋自由度的电场操纵是下一代自旋电子学的关键,但在太赫兹(THz)频率下的非易失性控制仍然难以捉摸。在这里,我们利用狄拉克半金属PtTe2的量子几何结构,在恒定磁场下实现了太赫兹自旋电子发射的全电可调性,而没有场循环或剩余磁化。通过将铁电衬底与PtTe2/铁磁异质层集成,我们电调制PtTe2的费米能级和Berry曲率,从而实时控制其自旋霍尔电导率,从而产生21%的太赫兹发射幅度调制。密度泛函理论证实了掺杂驱动的Berry曲率位移直接改变了自旋霍尔电导率,强调了几何相在超快自旋-电荷转换中的关键作用。我们的方法为可调谐自旋霍尔太赫兹器件提供了一种低复杂性、高能效和非易失性的途径,我们预计这些发现将为在基于自旋的逻辑和超快电子学中利用量子几何开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信