{"title":"Reevaluating the Effect of a LiF-Containing Solid Electrolyte Interphase on Lithium Metal Anodes","authors":"Chengkun Liu, Kaixiang Ren, Shilin Wu, Yuhang Zhang, Hai-Wen Li, Meng Yao, Zhipeng Jiang, Yongtao Li","doi":"10.1021/acs.nanolett.5c00675","DOIUrl":null,"url":null,"abstract":"Developing high-energy-density lithium metal batteries (LMBs) necessitates robust solid electrolyte interphases (SEIs) capable of enduring prolonged cycling. While lithium fluoride (LiF) is recognized as crucial for lithium metal anode (LMA) protection, the effects of different LiF sources in SEIs remain insufficiently understood. In this study, we systematically introduce single fluorine sources─anion LiF, solvent LiF, and native LiF─into a fluoride-free electrolyte system to elucidate the impact of LiF originating from different sources on the SEI composition and properties. Results reveal that SEI performance depends not only on LiF content but also on coexisting organic components. During deep cycling, solvent-derived LiF-rich SEIs, containing elevated LiF and organics, offer superior LMA protection ability. These SEIs maintain structural integrity during significant volume changes, effectively suppressing dead Li formation and achieving enhanced Coulombic efficiency. This work reexamines LiF’s protective mechanisms while advancing SEI chemistry understanding, providing critical insights for developing high-performance LMBs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"90 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00675","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-energy-density lithium metal batteries (LMBs) necessitates robust solid electrolyte interphases (SEIs) capable of enduring prolonged cycling. While lithium fluoride (LiF) is recognized as crucial for lithium metal anode (LMA) protection, the effects of different LiF sources in SEIs remain insufficiently understood. In this study, we systematically introduce single fluorine sources─anion LiF, solvent LiF, and native LiF─into a fluoride-free electrolyte system to elucidate the impact of LiF originating from different sources on the SEI composition and properties. Results reveal that SEI performance depends not only on LiF content but also on coexisting organic components. During deep cycling, solvent-derived LiF-rich SEIs, containing elevated LiF and organics, offer superior LMA protection ability. These SEIs maintain structural integrity during significant volume changes, effectively suppressing dead Li formation and achieving enhanced Coulombic efficiency. This work reexamines LiF’s protective mechanisms while advancing SEI chemistry understanding, providing critical insights for developing high-performance LMBs.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.