A competitive disinhibitory network for robust optic flow processing in Drosophila

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Mert Erginkaya, Tomás Cruz, Margarida Brotas, André Marques, Kathrin Steck, Aljoscha Nern, Filipa Torrão, Nélia Varela, Davi D. Bock, Michael Reiser, M. Eugenia Chiappe
{"title":"A competitive disinhibitory network for robust optic flow processing in Drosophila","authors":"Mert Erginkaya, Tomás Cruz, Margarida Brotas, André Marques, Kathrin Steck, Aljoscha Nern, Filipa Torrão, Nélia Varela, Davi D. Bock, Michael Reiser, M. Eugenia Chiappe","doi":"10.1038/s41593-025-01948-9","DOIUrl":null,"url":null,"abstract":"<p>Many animals navigate using optic flow, detecting rotational image velocity differences between their eyes to adjust direction. Forward locomotion produces strong symmetric translational optic flow that can mask these differences, yet the brain efficiently extracts these binocular asymmetries for course control. In <i>Drosophila</i> <i>melanogaster</i>, monocular horizontal system neurons facilitate detection of binocular asymmetries and contribute to steering. To understand these functions, we reconstructed horizontal system cells’ central network using electron microscopy datasets, revealing convergent visual inputs, a recurrent inhibitory middle layer and a divergent output layer projecting to the ventral nerve cord and deeper brain regions. Two-photon imaging, GABA receptor manipulations and modeling, showed that lateral disinhibition reduces the output’s translational sensitivity while enhancing its rotational selectivity. Unilateral manipulations confirmed the role of interneurons and descending outputs in steering. These findings establish competitive disinhibition as a key circuit mechanism for detecting rotational motion during translation, supporting navigation in dynamic environments.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"38 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01948-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many animals navigate using optic flow, detecting rotational image velocity differences between their eyes to adjust direction. Forward locomotion produces strong symmetric translational optic flow that can mask these differences, yet the brain efficiently extracts these binocular asymmetries for course control. In Drosophilamelanogaster, monocular horizontal system neurons facilitate detection of binocular asymmetries and contribute to steering. To understand these functions, we reconstructed horizontal system cells’ central network using electron microscopy datasets, revealing convergent visual inputs, a recurrent inhibitory middle layer and a divergent output layer projecting to the ventral nerve cord and deeper brain regions. Two-photon imaging, GABA receptor manipulations and modeling, showed that lateral disinhibition reduces the output’s translational sensitivity while enhancing its rotational selectivity. Unilateral manipulations confirmed the role of interneurons and descending outputs in steering. These findings establish competitive disinhibition as a key circuit mechanism for detecting rotational motion during translation, supporting navigation in dynamic environments.

Abstract Image

果蝇稳健光流处理的竞争性去抑制网络
许多动物利用光流导航,通过检测眼睛之间旋转图像的速度差来调整方向。向前运动产生强烈的对称平移光流,可以掩盖这些差异,但大脑有效地提取这些双目不对称的过程控制。在黑腹果蝇中,单眼水平系统神经元有助于检测双眼不对称并参与转向。为了理解这些功能,我们使用电子显微镜数据集重建了水平系统细胞的中枢网络,揭示了收敛的视觉输入,反复抑制的中间层和发散的输出层,投射到腹侧神经索和更深的大脑区域。双光子成像、GABA受体操作和建模表明,横向去抑制降低了输出的平移灵敏度,同时增强了其旋转选择性。单侧操纵证实了中间神经元和下行输出在转向中的作用。这些发现确立了竞争性去抑制是检测平移过程中旋转运动的关键电路机制,支持在动态环境中导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信