Akkermansia muciniphila exacerbates acute radiation-induced intestinal injury by depleting mucin and enhancing inflammation

Yafang Wang, Xusheng Wang, Zhenhui Chen, Jihua Zheng, Xiangqiang Liu, Yilin Zheng, Zhihao Zheng, Zi Xu, Yaowei Zhang, Keli Chen, Yuqin Zhang, Lu Yu, Yi Ding
{"title":"Akkermansia muciniphila exacerbates acute radiation-induced intestinal injury by depleting mucin and enhancing inflammation","authors":"Yafang Wang, Xusheng Wang, Zhenhui Chen, Jihua Zheng, Xiangqiang Liu, Yilin Zheng, Zhihao Zheng, Zi Xu, Yaowei Zhang, Keli Chen, Yuqin Zhang, Lu Yu, Yi Ding","doi":"10.1093/ismejo/wraf084","DOIUrl":null,"url":null,"abstract":"Dysbiosis of gut microbiota plays a crucial role in acute radiation-induced intestinal injury. However, studies on the influence of gut microbiota on acute radiation-induced intestinal injury are inconsistent. In this study, we established an acute radiation-induced intestinal injury mouse model and performed fecal microbiota transplantation to explore the role of the gut microbiota in acute radiation-induced intestinal injury. We observed a significant increase in Akkermansia muciniphila following irradiation, whereas fecal microbiota transplantation effectively reduced Akkermansia muciniphila levels. Contrary to expectations, Akkermansia muciniphila supplementation increased acute radiation-induced intestinal injury and mortality. Mechanistically, post-radiation Akkermansia muciniphila upregulates mucin metabolism genes and consumes mucin, thinning the mucosal barrier and promoting the adhesion and translocation of potential pathogens to epithelial cells, thus exacerbating acute radiation-induced intestinal injury. This enables Akkermansia muciniphila to use mucin as an energy source. Additionally, Akkermansia muciniphila increases the inflammatory macrophage changes and secretion of inflammatory cytokines, leading to a decrease in epithelial stem cell density and inhibition of goblet cell differentiation, further exacerbating acute radiation-induced intestinal injury. Our findings suggest that in certain intestinal environments, the addition of Akkermansia muciniphila may worsen radiation-induced intestinal damage; thus, alternative approaches to reverse the dysbiosis associated with radiotherapy should be explored.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dysbiosis of gut microbiota plays a crucial role in acute radiation-induced intestinal injury. However, studies on the influence of gut microbiota on acute radiation-induced intestinal injury are inconsistent. In this study, we established an acute radiation-induced intestinal injury mouse model and performed fecal microbiota transplantation to explore the role of the gut microbiota in acute radiation-induced intestinal injury. We observed a significant increase in Akkermansia muciniphila following irradiation, whereas fecal microbiota transplantation effectively reduced Akkermansia muciniphila levels. Contrary to expectations, Akkermansia muciniphila supplementation increased acute radiation-induced intestinal injury and mortality. Mechanistically, post-radiation Akkermansia muciniphila upregulates mucin metabolism genes and consumes mucin, thinning the mucosal barrier and promoting the adhesion and translocation of potential pathogens to epithelial cells, thus exacerbating acute radiation-induced intestinal injury. This enables Akkermansia muciniphila to use mucin as an energy source. Additionally, Akkermansia muciniphila increases the inflammatory macrophage changes and secretion of inflammatory cytokines, leading to a decrease in epithelial stem cell density and inhibition of goblet cell differentiation, further exacerbating acute radiation-induced intestinal injury. Our findings suggest that in certain intestinal environments, the addition of Akkermansia muciniphila may worsen radiation-induced intestinal damage; thus, alternative approaches to reverse the dysbiosis associated with radiotherapy should be explored.
嗜粘杆菌通过消耗粘蛋白和增强炎症加剧急性辐射诱导的肠道损伤
肠道菌群失调在急性辐射性肠道损伤中起着至关重要的作用。然而,关于肠道菌群对急性辐射性肠损伤影响的研究并不一致。本研究通过建立急性辐射致肠损伤小鼠模型,并进行粪便菌群移植,探讨肠道菌群在急性辐射致肠损伤中的作用。我们观察到辐照后嗜粘阿克曼氏菌显著增加,而粪便微生物群移植有效地降低了嗜粘阿克曼氏菌水平。与预期相反,补充嗜粘液阿克曼氏菌增加了急性辐射引起的肠道损伤和死亡率。在机制上,辐射后嗜粘Akkermansia muciniphila上调粘蛋白代谢基因并消耗粘蛋白,使粘膜屏障变薄,促进潜在病原体对上皮细胞的粘附和易位,从而加剧急性辐射诱导的肠道损伤。这使得嗜粘蛋白Akkermansia能够使用粘蛋白作为能量来源。此外,嗜粘Akkermansia muciniphila增加炎性巨噬细胞的变化和炎性细胞因子的分泌,导致上皮干细胞密度降低,杯状细胞分化受到抑制,进一步加剧急性辐射诱导的肠道损伤。我们的研究结果表明,在某些肠道环境中,嗜粘阿克曼氏菌的加入可能会加重辐射引起的肠道损伤;因此,应该探索替代方法来逆转与放疗相关的生态失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信