{"title":"Methacrylated Chitosan Methacrylated Poly(vinyl alcohol)-Based Hydrogel Patch for Long-Term Electrochemical Wound pH Sensing","authors":"Maide Miray Albay, Taher Abbasiasl, ̧Çiğdem Buse Oral, Levent Beker","doi":"10.1021/acssensors.4c02172","DOIUrl":null,"url":null,"abstract":"While every wound has the potential to become chronic, the risk is significantly higher in individuals with specific medical conditions. Given this inherent risk, continuous wound monitoring patches are beneficial for all wound types throughout the healing process, enabling the early detection and management of chronic wound development. In this work, we introduce an eco-friendly, hydrogel-integrated, capillary-driven wound patch designed for continuous pH monitoring. The hydrogel, synthesized from methacrylated chitosan and methacrylated poly(vinyl alcohol), provides antibacterial properties, tissue adhesion, and moisture retention, thereby supporting stable electrochemical pH detection. A paper-based, capillary-driven microfluidic layer facilitates fluid transport toward an evaporation pad, enhancing liquid uptake by approximately 4-fold after 2 h compared to the hydrogel alone. In vitro experiments demonstrated that the hydrogel-integrated sensor effectively monitored pH, exhibiting a near-linear voltage response of 16.92 mV per pH unit. The implementation of such a wound dressing represents a significant advancement in wound healing applications, combining functionality with environmental sustainability.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"24 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While every wound has the potential to become chronic, the risk is significantly higher in individuals with specific medical conditions. Given this inherent risk, continuous wound monitoring patches are beneficial for all wound types throughout the healing process, enabling the early detection and management of chronic wound development. In this work, we introduce an eco-friendly, hydrogel-integrated, capillary-driven wound patch designed for continuous pH monitoring. The hydrogel, synthesized from methacrylated chitosan and methacrylated poly(vinyl alcohol), provides antibacterial properties, tissue adhesion, and moisture retention, thereby supporting stable electrochemical pH detection. A paper-based, capillary-driven microfluidic layer facilitates fluid transport toward an evaporation pad, enhancing liquid uptake by approximately 4-fold after 2 h compared to the hydrogel alone. In vitro experiments demonstrated that the hydrogel-integrated sensor effectively monitored pH, exhibiting a near-linear voltage response of 16.92 mV per pH unit. The implementation of such a wound dressing represents a significant advancement in wound healing applications, combining functionality with environmental sustainability.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.