Ayana Mori , Yuuki Hirata , Mayumi Kishida , Daisuke Nonaka , Akihiko Kondo , Yutaro Mori , Shuhei Noda , Tsutomu Tanaka
{"title":"Metabolic engineering of Escherichia coli for 4-nitrophenylalanine production via the 4-aminophenylalanine synthetic pathway","authors":"Ayana Mori , Yuuki Hirata , Mayumi Kishida , Daisuke Nonaka , Akihiko Kondo , Yutaro Mori , Shuhei Noda , Tsutomu Tanaka","doi":"10.1016/j.ymben.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>The non-natural amino acid 4-nitrophenylalanine is a crucial pharmaceutical ingredient and has extensive utility in protein engineering. Here, we demonstrated the production of 4-nitrophenylalanine by <em>Escherichia coli</em> with AurF, 4-aminobenzoate <em>N</em>-oxygenase from <em>Streptomyces thioluteus</em>. Firstly, eight distinct gene combinations, encompassing four variants of <em>papA</em> and two of <em>papBC</em>, were evaluated to optimize the production of 4-aminophenylalanine, a precursor of 4-nitrophenylalanine. The strain co-expressing both <em>pabAB</em> from <em>E. coli</em> and <em>papBC</em> from <em>Streptomyces venezuelae</em> attained the highest 4-aminophenylalanine production. In a fed-batch fermenter cultivation, 4-aminophenylalanine production of 22.5 g/L was achieved. To produce 4-nitrophenylalanine from glucose, we constructed strains co-expressing AurF alongside the genes responsible for 4-aminophenylalanine synthesis. The subsequent optimization of the plasmid copy numbers carrying each gene set resulted in an increase in the 4-nitrophenylalanine production titer. Transcription analysis revealed that the expression level of the 4-aminophenylalanine biosynthetic genes markedly contributed to 4-nitrophenylalanine production. After optimizing batch fermentation conditions, the titer of 4-nitrophenylalanine increased to 2.22 g/L. Overall, these results provide the basis for industrial microbial production of 4-nitrophenylalanine, contributing to the advancement of biotechnological methodologies for generating non-natural amino acids with specific functionalities.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 171-180"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000709","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The non-natural amino acid 4-nitrophenylalanine is a crucial pharmaceutical ingredient and has extensive utility in protein engineering. Here, we demonstrated the production of 4-nitrophenylalanine by Escherichia coli with AurF, 4-aminobenzoate N-oxygenase from Streptomyces thioluteus. Firstly, eight distinct gene combinations, encompassing four variants of papA and two of papBC, were evaluated to optimize the production of 4-aminophenylalanine, a precursor of 4-nitrophenylalanine. The strain co-expressing both pabAB from E. coli and papBC from Streptomyces venezuelae attained the highest 4-aminophenylalanine production. In a fed-batch fermenter cultivation, 4-aminophenylalanine production of 22.5 g/L was achieved. To produce 4-nitrophenylalanine from glucose, we constructed strains co-expressing AurF alongside the genes responsible for 4-aminophenylalanine synthesis. The subsequent optimization of the plasmid copy numbers carrying each gene set resulted in an increase in the 4-nitrophenylalanine production titer. Transcription analysis revealed that the expression level of the 4-aminophenylalanine biosynthetic genes markedly contributed to 4-nitrophenylalanine production. After optimizing batch fermentation conditions, the titer of 4-nitrophenylalanine increased to 2.22 g/L. Overall, these results provide the basis for industrial microbial production of 4-nitrophenylalanine, contributing to the advancement of biotechnological methodologies for generating non-natural amino acids with specific functionalities.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.