Pt-Induced Sublattice Distortion Facilitates Enzyme Cascade Reactions for Eradicating Intracellularly Methicillin-Resistant Staphylococcus aureus and Enhancing Diabetic Wound Healing

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-30 DOI:10.1021/acsnano.5c01894
Xiaoning Hou, Hongsu Wang, Xinyu Yao, Qianliao Zhou, Xiaodi Niu
{"title":"Pt-Induced Sublattice Distortion Facilitates Enzyme Cascade Reactions for Eradicating Intracellularly Methicillin-Resistant Staphylococcus aureus and Enhancing Diabetic Wound Healing","authors":"Xiaoning Hou, Hongsu Wang, Xinyu Yao, Qianliao Zhou, Xiaodi Niu","doi":"10.1021/acsnano.5c01894","DOIUrl":null,"url":null,"abstract":"Metal oxide nanozymes hold significant potential in combating bacterial infections; however, their ordered crystal structures limit the enhancement of catalytic activity, posing challenges in addressing clinical needs for eliminating intracellularly colonized bacteria. Here, we report the development of an integrated diagnostic-therapeutic microneedle patch incorporates the Res@PtZ-Z nanozyme hybrid. Res@PtZ-Z consists of a ZIF shell loaded with the natural compound resveratrol (Res), encapsulating a Pt-doped zinc oxide (ZnO) nanozyme core (PtZ). The Res component modulates charge distribution on the ZIF shell and attenuates bacterial virulence, thereby promoting the uptake of Res@PtZ-Z by host cells. The PtZ core, doped with Pt<sup>4+</sup> to induce sublattice distortion in ZnO, exhibits oxidase-like, peroxidase-like, and catalase-like activities. Under intracellular hypoxic conditions, the cascade of these enzyme-like activities ensures a sustained generation of reactive oxygen species (ROS), enabling robust antibacterial effects. Additionally, Res@PtZ-Z enables real-time infection monitoring by oxidizing the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate to produce a distinct colorimetric response. This approach addresses both methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) invasion and intracellular persistence, contributing to improved infection management and promoting wound healing.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"56 1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01894","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide nanozymes hold significant potential in combating bacterial infections; however, their ordered crystal structures limit the enhancement of catalytic activity, posing challenges in addressing clinical needs for eliminating intracellularly colonized bacteria. Here, we report the development of an integrated diagnostic-therapeutic microneedle patch incorporates the Res@PtZ-Z nanozyme hybrid. Res@PtZ-Z consists of a ZIF shell loaded with the natural compound resveratrol (Res), encapsulating a Pt-doped zinc oxide (ZnO) nanozyme core (PtZ). The Res component modulates charge distribution on the ZIF shell and attenuates bacterial virulence, thereby promoting the uptake of Res@PtZ-Z by host cells. The PtZ core, doped with Pt4+ to induce sublattice distortion in ZnO, exhibits oxidase-like, peroxidase-like, and catalase-like activities. Under intracellular hypoxic conditions, the cascade of these enzyme-like activities ensures a sustained generation of reactive oxygen species (ROS), enabling robust antibacterial effects. Additionally, Res@PtZ-Z enables real-time infection monitoring by oxidizing the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate to produce a distinct colorimetric response. This approach addresses both methicillin-resistant Staphylococcus aureus (MRSA) invasion and intracellular persistence, contributing to improved infection management and promoting wound healing.

Abstract Image

pt诱导的亚晶格扭曲促进酶级联反应,以根除细胞内耐甲氧西林金黄色葡萄球菌并促进糖尿病伤口愈合
金属氧化物纳米酶在对抗细菌感染方面具有巨大的潜力;然而,它们有序的晶体结构限制了催化活性的增强,在解决消除细胞内定植细菌的临床需求方面提出了挑战。在这里,我们报告了一种集成诊断治疗微针贴片的发展,该贴片包含Res@PtZ-Z纳米酶杂交。Res@PtZ-Z由一个负载天然化合物白藜芦醇(Res)的ZIF外壳组成,封装了一个掺杂pt的氧化锌(ZnO)纳米酶核心(PtZ)。Res组分调节ZIF外壳上的电荷分布,减弱细菌毒力,从而促进宿主细胞对Res@PtZ-Z的摄取。在ZnO中掺杂Pt4+诱导亚晶格畸变的PtZ核表现出类似氧化酶、过氧化物酶和过氧化氢酶的活性。在细胞内缺氧条件下,这些酶样活性的级联确保了活性氧(ROS)的持续产生,从而实现了强大的抗菌作用。此外,Res@PtZ-Z通过氧化3,3 ',5,5 ' -四甲基联苯胺(TMB)底物来产生独特的比色反应,从而实现实时感染监测。这种方法解决了耐甲氧西林金黄色葡萄球菌(MRSA)的侵袭和细胞内持久性,有助于改善感染管理和促进伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信