Haochen Liu, Arsenii S. Portniagin, Bing Tang, Kunnathodi Vighnesh, Yun Li, Ye Wu, Daniil A. Rusanov, Lingyi Ke, Yunfan Wang, Ding Zhu, Desui Chen, Kwok-Chung Law, Maria V. Babak, Elena Ushakova, Andrey L. Rogach
{"title":"Helical Perovskite Nanowires with Strong Circularly Polarized Luminescence Self-Assembled from Red-Emitting CsPbI3 Quantum Dots Following Chiral Ligand Exchange","authors":"Haochen Liu, Arsenii S. Portniagin, Bing Tang, Kunnathodi Vighnesh, Yun Li, Ye Wu, Daniil A. Rusanov, Lingyi Ke, Yunfan Wang, Ding Zhu, Desui Chen, Kwok-Chung Law, Maria V. Babak, Elena Ushakova, Andrey L. Rogach","doi":"10.1021/acsnano.5c03149","DOIUrl":null,"url":null,"abstract":"Circularly polarized luminescence (CPL) of chiral perovskite nanocrystals is crucial for applications such as spin-polarized light-emitting diodes and chiral photodetectors. However, the reported luminescence dissymmetry factors are often too low for practical applications; it is also important for CPL wavelengths to cover the red emission range for display applications. Herein, we realized helical perovskite nanowires self-assembled from red-emitting CsPbI<sub>3</sub> quantum dots (QDs) with a strong CPL signal around 640 nm, which was enabled by chiral ligand R-/S-binaphthyl phosphoric acid. The formation of CsPbI<sub>3</sub> nanowires from perovskite QDs occurred by oriented attachment; QDs remaining in solution attached at the surface of the nanowires, forming helical structures. The films produced from these chiral nanowires demonstrate high dissymmetry factors of 1.1 × 10<sup>–2</sup> and 2.3 × 10<sup>–2</sup> for absorption and luminescence, respectively, surpassing many previously reported chiral nanomaterials. We employed multilayer nanowire films as chiral filters, generating left- and right-handed CPL.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"25 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03149","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circularly polarized luminescence (CPL) of chiral perovskite nanocrystals is crucial for applications such as spin-polarized light-emitting diodes and chiral photodetectors. However, the reported luminescence dissymmetry factors are often too low for practical applications; it is also important for CPL wavelengths to cover the red emission range for display applications. Herein, we realized helical perovskite nanowires self-assembled from red-emitting CsPbI3 quantum dots (QDs) with a strong CPL signal around 640 nm, which was enabled by chiral ligand R-/S-binaphthyl phosphoric acid. The formation of CsPbI3 nanowires from perovskite QDs occurred by oriented attachment; QDs remaining in solution attached at the surface of the nanowires, forming helical structures. The films produced from these chiral nanowires demonstrate high dissymmetry factors of 1.1 × 10–2 and 2.3 × 10–2 for absorption and luminescence, respectively, surpassing many previously reported chiral nanomaterials. We employed multilayer nanowire films as chiral filters, generating left- and right-handed CPL.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.