Won-Suk Song, Xiyu Shen, Kang Du, Cuauhtemoc B. Ramirez, Sang Hee Park, Yang Cao, Johnny Le, Hosung Bae, Joohwan Kim, Yujin Chun, Nikki Joyce Khong, Marie Kim, Sunhee Jung, Wonsuk Choi, Miranda L. Lopez, Zaid Said, Zehan Song, Sang-Guk Lee, Dequina Nicholas, Yo Sasaki, Qin Yang
{"title":"Nicotinic acid riboside maintains NAD+ homeostasis and ameliorates aging-associated NAD+ decline","authors":"Won-Suk Song, Xiyu Shen, Kang Du, Cuauhtemoc B. Ramirez, Sang Hee Park, Yang Cao, Johnny Le, Hosung Bae, Joohwan Kim, Yujin Chun, Nikki Joyce Khong, Marie Kim, Sunhee Jung, Wonsuk Choi, Miranda L. Lopez, Zaid Said, Zehan Song, Sang-Guk Lee, Dequina Nicholas, Yo Sasaki, Qin Yang","doi":"10.1016/j.cmet.2025.04.007","DOIUrl":null,"url":null,"abstract":"Liver-derived circulating nicotinamide from nicotinamide adenine dinucleotide (NAD<sup>+</sup>) catabolism primarily feeds systemic organs for NAD<sup>+</sup> synthesis. We surprisingly found that, despite blunted hepatic NAD<sup>+</sup> and nicotinamide production in liver-specific nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) deletion mice (liver-specific knockout [LKO]), circulating nicotinamide and extra-hepatic organs’ NAD<sup>+</sup> are unaffected. Metabolomics reveals a massive accumulation of a novel molecule in the LKO liver, which we identify as nicotinic acid riboside (NaR). We further demonstrate cytosolic 5′-nucleotidase II (NT5C2) as the NaR-producing enzyme. The liver releases NaR to the bloodstream, and kidneys take up NaR to synthesize NAD<sup>+</sup> through nicotinamide riboside kinase 1 (NRK1) and replenish circulating nicotinamide. Serum NaR levels decline with aging, whereas oral NaR supplementation in aged mice boosts serum nicotinamide and multi-organ NAD<sup>+</sup>, including kidneys, and reduces kidney inflammation and albuminuria. Thus, the liver-kidney axis maintains systemic NAD<sup>+</sup> homeostasis via circulating NaR, and NaR supplement ameliorates aging-associated NAD<sup>+</sup> decline and kidney dysfunction.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"91 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.04.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver-derived circulating nicotinamide from nicotinamide adenine dinucleotide (NAD+) catabolism primarily feeds systemic organs for NAD+ synthesis. We surprisingly found that, despite blunted hepatic NAD+ and nicotinamide production in liver-specific nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) deletion mice (liver-specific knockout [LKO]), circulating nicotinamide and extra-hepatic organs’ NAD+ are unaffected. Metabolomics reveals a massive accumulation of a novel molecule in the LKO liver, which we identify as nicotinic acid riboside (NaR). We further demonstrate cytosolic 5′-nucleotidase II (NT5C2) as the NaR-producing enzyme. The liver releases NaR to the bloodstream, and kidneys take up NaR to synthesize NAD+ through nicotinamide riboside kinase 1 (NRK1) and replenish circulating nicotinamide. Serum NaR levels decline with aging, whereas oral NaR supplementation in aged mice boosts serum nicotinamide and multi-organ NAD+, including kidneys, and reduces kidney inflammation and albuminuria. Thus, the liver-kidney axis maintains systemic NAD+ homeostasis via circulating NaR, and NaR supplement ameliorates aging-associated NAD+ decline and kidney dysfunction.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.