Discriminating Deposit and Mineralization Types Using Major Elements and Fluorine in Mica: A Machine Learning Approach

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Ziqi Hu, Dexian Zhang, Shaowei Chen, Hao Xu, Shuishi Zeng, Junzhe Kou
{"title":"Discriminating Deposit and Mineralization Types Using Major Elements and Fluorine in Mica: A Machine Learning Approach","authors":"Ziqi Hu, Dexian Zhang, Shaowei Chen, Hao Xu, Shuishi Zeng, Junzhe Kou","doi":"10.1007/s11053-025-10498-7","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) is increasingly being used in geosciences for complex classification tasks. Mica minerals are commonly found in deposits of precious metals, rare metals, and rare earth elements, including tungsten, tin, lithium, and copper, among others. These minerals can provide insights into the formation environment and age of various deposits. While ML has been applied mainly for optical recognition and compositional analysis of mica, its use for classification of deposit types and mineralization types remains underexplored. This study aimed to fill this gap by developing a stacking multi-classification model, which integrates multiple ML algorithms, and logistic regression as the meta-model. Trained with a dataset of 3479 and 4005 mica major element compositions, both models achieved 0.99 accuracy on the test set. Precision, recall, and F1-scores were all reported at 0.99, indicating excellent classification performance. Feature importance analysis revealed that elements such as F, MgO, FeO, MnO, and Al<sub>2</sub>O<sub>3</sub> are crucial for classification, reflecting distinct geological conditions across different types of ore deposits. Copper and gold deposits typically form around 700 °C under high oxygen fugacity and low fluorine fugacity, while W and Sn deposits form in the temperature range of 600–700 °C with varying oxygen fugacity. Lithium and beryllium deposits form at temperatures ranging 500–650 °C, exhibiting moderate oxygen fugacity and a wide range of fluorine fugacity. This paper presents a robust model for classifying deposit types and mineralization types based on mica composition and emphasizes the strong link between ML outcomes and geological characteristics.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"25 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10498-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) is increasingly being used in geosciences for complex classification tasks. Mica minerals are commonly found in deposits of precious metals, rare metals, and rare earth elements, including tungsten, tin, lithium, and copper, among others. These minerals can provide insights into the formation environment and age of various deposits. While ML has been applied mainly for optical recognition and compositional analysis of mica, its use for classification of deposit types and mineralization types remains underexplored. This study aimed to fill this gap by developing a stacking multi-classification model, which integrates multiple ML algorithms, and logistic regression as the meta-model. Trained with a dataset of 3479 and 4005 mica major element compositions, both models achieved 0.99 accuracy on the test set. Precision, recall, and F1-scores were all reported at 0.99, indicating excellent classification performance. Feature importance analysis revealed that elements such as F, MgO, FeO, MnO, and Al2O3 are crucial for classification, reflecting distinct geological conditions across different types of ore deposits. Copper and gold deposits typically form around 700 °C under high oxygen fugacity and low fluorine fugacity, while W and Sn deposits form in the temperature range of 600–700 °C with varying oxygen fugacity. Lithium and beryllium deposits form at temperatures ranging 500–650 °C, exhibiting moderate oxygen fugacity and a wide range of fluorine fugacity. This paper presents a robust model for classifying deposit types and mineralization types based on mica composition and emphasizes the strong link between ML outcomes and geological characteristics.

利用云母中主要元素和氟判别矿床和矿化类型:一种机器学习方法
机器学习(ML)在地球科学中越来越多地用于复杂的分类任务。云母矿物通常存在于贵金属、稀有金属和稀土元素的矿床中,包括钨、锡、锂和铜等。这些矿物可以帮助我们了解各种矿床的形成环境和年龄。虽然ML主要应用于云母的光学识别和成分分析,但在矿床类型和成矿类型分类方面的应用尚未得到充分探索。本研究旨在通过开发一个堆叠多分类模型来填补这一空白,该模型集成了多种机器学习算法,并将逻辑回归作为元模型。使用3479和4005个云母主元素组成数据集进行训练,两种模型在测试集上的准确率均达到0.99。准确率、召回率和f1得分均为0.99,表明分类性能优异。特征重要性分析表明,F、MgO、FeO、MnO和Al2O3等元素对分类至关重要,反映了不同类型矿床不同的地质条件。铜、金矿床一般在700℃左右形成,具有高氧逸度和低氟逸度特征,而W、Sn矿床一般在600 ~ 700℃形成,具有不同的氧逸度特征。锂和铍在500-650℃的温度下形成,表现出适度的氧逸度和广泛的氟逸度。本文提出了一个基于云母成分划分矿床类型和成矿类型的稳健模型,并强调了ML结果与地质特征之间的紧密联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信