Massive experimental quantification allows interpretable deep learning of protein aggregation

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mike Thompson, Mariano Martín, Trinidad Sanmartín Olmo, Chandana Rajesh, Peter K. Koo, Benedetta Bolognesi, Ben Lehner
{"title":"Massive experimental quantification allows interpretable deep learning of protein aggregation","authors":"Mike Thompson,&nbsp;Mariano Martín,&nbsp;Trinidad Sanmartín Olmo,&nbsp;Chandana Rajesh,&nbsp;Peter K. Koo,&nbsp;Benedetta Bolognesi,&nbsp;Ben Lehner","doi":"10.1126/sciadv.adt5111","DOIUrl":null,"url":null,"abstract":"<div >Protein aggregation is a pathological hallmark of more than 50 human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the aggregation of &gt;100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts aggregation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA’s decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict aggregation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt5111","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt5111","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Protein aggregation is a pathological hallmark of more than 50 human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the aggregation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts aggregation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA’s decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict aggregation.

Abstract Image

大量的实验量化允许对蛋白质聚集进行可解释的深度学习
蛋白质聚集是50多种人类疾病的病理标志,也是生物技术的一个主要问题。已经提出了从序列中预测聚合的方法,但这些方法都是在小而有偏差的实验数据集上进行训练和评估的。在这里,我们通过实验量化100,000个蛋白质序列的聚集直接解决了这一数据短缺问题。这个前所未有的数据集揭示了现有计算方法的有限性能,并允许我们训练CANYA,这是一个卷积-注意力混合神经网络,可以准确地从序列中预测聚合。我们采用基因组神经网络可解释性分析来揭示CANYA的决策过程和习得的语法。我们的研究结果说明了随机序列空间的大规模实验分析的力量,并提供了一个可解释和鲁棒的神经网络模型来预测聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信