Positive corona discharge of rod-plate electrodes in high-speed airflow

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-12-28 DOI:10.1049/hve2.12514
Qiang Wu, Yu Wang, Zhengxian Du, Zeliang Wu, Yeqiang Deng, Xishan Wen
{"title":"Positive corona discharge of rod-plate electrodes in high-speed airflow","authors":"Qiang Wu,&nbsp;Yu Wang,&nbsp;Zhengxian Du,&nbsp;Zeliang Wu,&nbsp;Yeqiang Deng,&nbsp;Xishan Wen","doi":"10.1049/hve2.12514","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of positive corona discharge of rod electrode in high-speed airflow are studied in this paper. The experiments were carried out in a wind tunnel with a maximum flow speed of 100 m/s in a dark room. The discharge voltage and current were recorded and the corona patterns were captured by a digital single lens reflex (DSLR) camera during the experiment. A discharge transition in rod electrode from streamer corona to mixed streamer-glow corona, and finally to stable glow discharge was observed with the voltage increased. The increase of airflow speed resulted in a decrease of each corona inception voltages. The streamers will be suppressed and shifted towards the upwind side, while the glow layer will be promoted and shifted towards the downwind side in low and upwind side in high voltages. The glow corona current and the voltage show a quadratic function and the higher the airflow speeds, the bigger the coefficient of square of voltage. The distributions of peaks, pulse widths and interval times of streamer pulses were analysed, showing good correspondence with the streamer images. The measurements were explained by combining particle transport and local air pressure distribution.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"337-350"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12514","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The characteristics of positive corona discharge of rod electrode in high-speed airflow are studied in this paper. The experiments were carried out in a wind tunnel with a maximum flow speed of 100 m/s in a dark room. The discharge voltage and current were recorded and the corona patterns were captured by a digital single lens reflex (DSLR) camera during the experiment. A discharge transition in rod electrode from streamer corona to mixed streamer-glow corona, and finally to stable glow discharge was observed with the voltage increased. The increase of airflow speed resulted in a decrease of each corona inception voltages. The streamers will be suppressed and shifted towards the upwind side, while the glow layer will be promoted and shifted towards the downwind side in low and upwind side in high voltages. The glow corona current and the voltage show a quadratic function and the higher the airflow speeds, the bigger the coefficient of square of voltage. The distributions of peaks, pulse widths and interval times of streamer pulses were analysed, showing good correspondence with the streamer images. The measurements were explained by combining particle transport and local air pressure distribution.

Abstract Image

高速气流中棒板电极的正电晕放电
本文研究了高速气流中棒电极的正电晕放电特性。实验在风洞中进行,最大风速为100m /s,暗室进行。实验过程中,用数码单反相机记录放电电压和电流,并捕捉电晕图案。随着电压的升高,棒电极的放电由流光电晕向流光-辉光混合电晕过渡,最后过渡到稳定辉光放电。风速的增大导致各电晕起始电压的降低。流光被抑制并向上风侧移动,而辉光层在低电压下被提升并向下风侧移动,在高压下被提升并向上风侧移动。辉光电晕电流与电压呈二次函数关系,且气流速度越大,电压的平方系数越大。分析了脉冲的峰值分布、脉宽分布和间隔时间分布,发现其与图像吻合较好。用粒子输运和局部气压分布来解释这些测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信