Tianlei Xu, Xi Pang, Zongliang Xie, Peng Liu, Zongren Peng
{"title":"Research on interface charge behaviour and electrical threshold in layered epoxy/paper composites: From experiment to simulation","authors":"Tianlei Xu, Xi Pang, Zongliang Xie, Peng Liu, Zongren Peng","doi":"10.1049/hve2.12485","DOIUrl":null,"url":null,"abstract":"<p>Layered epoxy/paper composites that exhibit excellent insulating characteristics under elevated electrification and temperature conditions are essential components for power system insulation. Yet, inevitable charge accumulation occurs at hetero interfaces between layers due to interfacial polarisation and interface barrier effect, bringing about local electric field distortion and potential risk of partial discharge. A fundamental challenge is either to obtain accurate interface charge behaviours of in-service multi-layer insulating composites, or to construct verified simulating models for replacing experiments. Herein, a modified bipolar charge transport model to simulate interface charge behaviours in layered composites is proposed. With model parameters directly originated from equivalent experiments (e.g. conduction current measurement, thermally stimulated depolarisation current testing, and ultraviolet-visible spectroscopy) of epoxy/paper composites, the simulated temperature-dependent interface charge characteristics match well with pulsed electro-acoustic results. Furthermore, electrical thresholds can also be accurately calculated using such models (maximum deviation of 8.44% from experimental results), providing references for optimised insulation structural design.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"458-469"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12485","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12485","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Layered epoxy/paper composites that exhibit excellent insulating characteristics under elevated electrification and temperature conditions are essential components for power system insulation. Yet, inevitable charge accumulation occurs at hetero interfaces between layers due to interfacial polarisation and interface barrier effect, bringing about local electric field distortion and potential risk of partial discharge. A fundamental challenge is either to obtain accurate interface charge behaviours of in-service multi-layer insulating composites, or to construct verified simulating models for replacing experiments. Herein, a modified bipolar charge transport model to simulate interface charge behaviours in layered composites is proposed. With model parameters directly originated from equivalent experiments (e.g. conduction current measurement, thermally stimulated depolarisation current testing, and ultraviolet-visible spectroscopy) of epoxy/paper composites, the simulated temperature-dependent interface charge characteristics match well with pulsed electro-acoustic results. Furthermore, electrical thresholds can also be accurately calculated using such models (maximum deviation of 8.44% from experimental results), providing references for optimised insulation structural design.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf