Morphological engineering for high-performance perovskite field-effect transistors

FlexMat Pub Date : 2025-03-17 DOI:10.1002/flm2.39
Shuanglong Wang, Hong Lian, Yongge Yang, Zehua Wu, Yi Li, Haifeng Ling, Wojciech Pisula, Tomasz Marszalek, Tao Xu
{"title":"Morphological engineering for high-performance perovskite field-effect transistors","authors":"Shuanglong Wang,&nbsp;Hong Lian,&nbsp;Yongge Yang,&nbsp;Zehua Wu,&nbsp;Yi Li,&nbsp;Haifeng Ling,&nbsp;Wojciech Pisula,&nbsp;Tomasz Marszalek,&nbsp;Tao Xu","doi":"10.1002/flm2.39","DOIUrl":null,"url":null,"abstract":"<p>The emergence of perovskite semiconductors for field-effect transistor (FET) applications has received significant research attention due to their excellent electronic properties. The rapid development of perovskite FETs over the last few years has been driven by advances in understanding the thin-film morphologies of perovskite layers and their intriguing correlations with charge carrier transport, device performance, and stability. Here we summarize the progress in morphological engineering aimed at improving the electrical parameters of perovskite FETs. We first discuss the mechanisms of crystal nucleation and growth in solution-processed polycrystalline perovskite thin films, along with their morphological characteristics, including grain boundaries, defects, ionic and charge transport properties. We then elaborate on the impacts of these microstructures on the performance of perovskite FET devices. Representative optimization strategies are also presented, showcasing how fundamental understandings have been translated into state-of-the-art perovskite FETs. Finally, we provide a perspective on the remaining challenges and future directions of optimizing perovskite morphologies, toward an in-depth understanding of the relationships between film morphology, electrical property and device performance for the next advances in transistor.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"2 1","pages":"82-106"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.39","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of perovskite semiconductors for field-effect transistor (FET) applications has received significant research attention due to their excellent electronic properties. The rapid development of perovskite FETs over the last few years has been driven by advances in understanding the thin-film morphologies of perovskite layers and their intriguing correlations with charge carrier transport, device performance, and stability. Here we summarize the progress in morphological engineering aimed at improving the electrical parameters of perovskite FETs. We first discuss the mechanisms of crystal nucleation and growth in solution-processed polycrystalline perovskite thin films, along with their morphological characteristics, including grain boundaries, defects, ionic and charge transport properties. We then elaborate on the impacts of these microstructures on the performance of perovskite FET devices. Representative optimization strategies are also presented, showcasing how fundamental understandings have been translated into state-of-the-art perovskite FETs. Finally, we provide a perspective on the remaining challenges and future directions of optimizing perovskite morphologies, toward an in-depth understanding of the relationships between film morphology, electrical property and device performance for the next advances in transistor.

Abstract Image

高性能钙钛矿场效应晶体管的形态工程
用于场效应晶体管(FET)的钙钛矿半导体由于其优异的电子性能而受到了广泛的关注。在过去的几年里,钙钛矿场效应管的快速发展是由钙钛矿层的薄膜形态及其与载流子输运、器件性能和稳定性的有趣相关性的理解所推动的。本文综述了形态学工程在改善钙钛矿场效应管电学参数方面的研究进展。我们首先讨论了溶液加工多晶钙钛矿薄膜的晶体成核和生长机制,以及它们的形态特征,包括晶界、缺陷、离子和电荷输运性质。然后,我们详细阐述了这些微结构对钙钛矿场效应管器件性能的影响。还提出了具有代表性的优化策略,展示了如何将基本理解转化为最先进的钙钛矿场效应管。最后,我们提供了优化钙钛矿形态的剩余挑战和未来方向的观点,以深入了解薄膜形态,电性能和器件性能之间的关系,为晶体管的下一个进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信