Fabrication of insulation spacers for ultra-high voltage gas-insulated switchgear using eco-friendly bio-based epoxy composite material characterisation evaluation

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-04-03 DOI:10.1049/hve2.70000
Chanyong Lee, Yohan Noh, Hangoo Cho, Jaehyeong Lee
{"title":"Fabrication of insulation spacers for ultra-high voltage gas-insulated switchgear using eco-friendly bio-based epoxy composite material characterisation evaluation","authors":"Chanyong Lee,&nbsp;Yohan Noh,&nbsp;Hangoo Cho,&nbsp;Jaehyeong Lee","doi":"10.1049/hve2.70000","DOIUrl":null,"url":null,"abstract":"<p>In the electric power equipment industry, various insulating materials and accessories are manufactured using petroleum-based epoxy resins. However, petrochemical resources are gradually becoming limited. In addition, the global surge in plastic usage has consistently raised concerns regarding greenhouse gas emissions, leading to worsening global warming. Therefore, to facilitate eco-friendly policies, industrialising epoxy systems applicable to high-pressure components using bio-based epoxy composites is essential. The results of the characterisation conducted in this research regarding bio-content were confirmed through thermogravimetric analysis and differential scanning calorimetry, which showed that as the bio-content increased, the thermal stability improved. Considering the operating temperature of 105°C for the insulation spacer, structurally, no issues would be encountered if the spacer was manufactured with a bio-content of 20% (bio 20%). Subsequent tensile and flexural strength measurements revealed mechanical properties equivalent to or better than those of their petroleum-based counterparts. The impact strength tended to decrease with increasing bio-content. Analysing the dielectric properties confirmed that the epoxy composite containing 20% biomaterial is suitable for manufacturing insulation spacers. Subsequently, a series of tests conducted after spacer fabrication confirmed the absence of internal metals and bubbles with no external discolouration or cracks observed.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"451-457"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the electric power equipment industry, various insulating materials and accessories are manufactured using petroleum-based epoxy resins. However, petrochemical resources are gradually becoming limited. In addition, the global surge in plastic usage has consistently raised concerns regarding greenhouse gas emissions, leading to worsening global warming. Therefore, to facilitate eco-friendly policies, industrialising epoxy systems applicable to high-pressure components using bio-based epoxy composites is essential. The results of the characterisation conducted in this research regarding bio-content were confirmed through thermogravimetric analysis and differential scanning calorimetry, which showed that as the bio-content increased, the thermal stability improved. Considering the operating temperature of 105°C for the insulation spacer, structurally, no issues would be encountered if the spacer was manufactured with a bio-content of 20% (bio 20%). Subsequent tensile and flexural strength measurements revealed mechanical properties equivalent to or better than those of their petroleum-based counterparts. The impact strength tended to decrease with increasing bio-content. Analysing the dielectric properties confirmed that the epoxy composite containing 20% biomaterial is suitable for manufacturing insulation spacers. Subsequently, a series of tests conducted after spacer fabrication confirmed the absence of internal metals and bubbles with no external discolouration or cracks observed.

Abstract Image

用环保型生物基环氧复合材料制造超高压气体绝缘开关柜绝缘垫片的性能评价
在电力设备工业中,各种绝缘材料和附件都是用石油基环氧树脂制造的。然而,石油化工资源逐渐变得有限。此外,全球塑料使用量的激增一直引起人们对温室气体排放的担忧,导致全球变暖加剧。因此,为了促进环保政策,使用生物基环氧复合材料实现适用于高压部件的环氧树脂系统的工业化是必不可少的。本研究对生物含量的表征结果通过热重分析和差示扫描量热法得到了证实,表明随着生物含量的增加,热稳定性也随之提高。考虑到绝缘隔离剂的工作温度为105℃,从结构上讲,如果隔离剂的生物含量为20%(生物含量为20%),则不会遇到任何问题。随后的拉伸和弯曲强度测量显示,其机械性能相当于或优于石油基材料。随着生物含量的增加,冲击强度有降低的趋势。通过对介电性能的分析,证实了含20%生物材料的环氧复合材料适合于制造绝缘垫片。随后,在隔离剂制造后进行的一系列测试证实,内部没有金属和气泡,外部没有变色或裂缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信