{"title":"UPS and Kinases—Gatekeepers of the G1/S Transition","authors":"Srija Roy, Gouranga Saha, Mrinal K. Ghosh","doi":"10.1002/biof.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The G1/S transition is a highly regulated and pivotal checkpoint in the cell cycle, where the cell decides whether to commit to DNA replication and subsequent division or enter a non-dividing state. This checkpoint serves as a critical control point for preventing uncontrolled cell proliferation and maintaining genomic stability. The major driving force underlying the G1/S transition is the sequential activation of Cyclin-dependent kinases (CDKs), which is regulated by the coordinated binding of Cyclin partners, as well as the phosphorylation and ubiquitin-mediated degradation of both Cyclin partners and Cyclin-dependent kinase inhibitors (CKIs). Various E3 ligase families govern the timely degradation of these regulatory proteins, with their activity intricately controlled by phosphorylation events. This coordination enables the cells to efficiently translate the environmental cues and molecular signaling inputs to determine their fate. We explore the evolution of three distinct models describing the G1/S transition, highlighting how the traditional linear model is being challenged by recent paradigm shifts and conflicting findings. These advances reveal emerging complexity and unresolved questions in the field, particularly regarding how the latest insights into coordinated phosphorylation and ubiquitination-dependent degradation integrate into contemporary models of the G1/S transition.</p>\n </div>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The G1/S transition is a highly regulated and pivotal checkpoint in the cell cycle, where the cell decides whether to commit to DNA replication and subsequent division or enter a non-dividing state. This checkpoint serves as a critical control point for preventing uncontrolled cell proliferation and maintaining genomic stability. The major driving force underlying the G1/S transition is the sequential activation of Cyclin-dependent kinases (CDKs), which is regulated by the coordinated binding of Cyclin partners, as well as the phosphorylation and ubiquitin-mediated degradation of both Cyclin partners and Cyclin-dependent kinase inhibitors (CKIs). Various E3 ligase families govern the timely degradation of these regulatory proteins, with their activity intricately controlled by phosphorylation events. This coordination enables the cells to efficiently translate the environmental cues and molecular signaling inputs to determine their fate. We explore the evolution of three distinct models describing the G1/S transition, highlighting how the traditional linear model is being challenged by recent paradigm shifts and conflicting findings. These advances reveal emerging complexity and unresolved questions in the field, particularly regarding how the latest insights into coordinated phosphorylation and ubiquitination-dependent degradation integrate into contemporary models of the G1/S transition.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.