{"title":"Effect of gamma-ray irradiation on electrical conductivity of polypropylene composite for nuclear cable insulation","authors":"Baixin Liu, Yu Gao, Chenyi Guo, Jing Li, Yu Chen, Junguo Gao, Boxue Du","doi":"10.1049/hve2.70002","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the effect of gamma-ray irradiation on the electrical conductivity of polypropylene (PP) composites has been studied. The samples are prepared using PP and styrene–ethylene–butylene–styrene elastomer with contents ranging from 0 wt% to 50 wt%, and exposed to Cobalt-60 gamma irradiation, with a dose from 0 to 250 kGy. Electrical conductivities at different temperatures and trap distributions are measured to observe the deterioration of insulation performance. The microstructure of the sample is estimated using differential scanning calorimetry, X-ray diffraction, thermogravimetric analysis and a scanning electron microscope. The obtained results demonstrate a correlation between the increase in electrical conductivity and the elevation in both total dose and temperature. At 250 kGy, the trap distribution tends to become shallower, accompanied by a decrease in crystallinity, melting and decomposition temperatures of the sample. The PP composite exhibits better stability against irradiation and thermal effects, primarily due to the cross-linked structures formed by irradiation.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"470-479"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the effect of gamma-ray irradiation on the electrical conductivity of polypropylene (PP) composites has been studied. The samples are prepared using PP and styrene–ethylene–butylene–styrene elastomer with contents ranging from 0 wt% to 50 wt%, and exposed to Cobalt-60 gamma irradiation, with a dose from 0 to 250 kGy. Electrical conductivities at different temperatures and trap distributions are measured to observe the deterioration of insulation performance. The microstructure of the sample is estimated using differential scanning calorimetry, X-ray diffraction, thermogravimetric analysis and a scanning electron microscope. The obtained results demonstrate a correlation between the increase in electrical conductivity and the elevation in both total dose and temperature. At 250 kGy, the trap distribution tends to become shallower, accompanied by a decrease in crystallinity, melting and decomposition temperatures of the sample. The PP composite exhibits better stability against irradiation and thermal effects, primarily due to the cross-linked structures formed by irradiation.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf