Influence of maleic anhydride grafting on the positive temperature coefficient effect of semi-conductive composites and space charge injection to XLPE insulation

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-01-22 DOI:10.1049/hve2.12504
Chengcheng Zhang, Sen Wang, Hong Zhao, Minghua Chen, Xuan Wang, Xiaohong Chi
{"title":"Influence of maleic anhydride grafting on the positive temperature coefficient effect of semi-conductive composites and space charge injection to XLPE insulation","authors":"Chengcheng Zhang,&nbsp;Sen Wang,&nbsp;Hong Zhao,&nbsp;Minghua Chen,&nbsp;Xuan Wang,&nbsp;Xiaohong Chi","doi":"10.1049/hve2.12504","DOIUrl":null,"url":null,"abstract":"<p>To suppress the resistivity positive temperature coefficient (PTC) effect of ethylene-butyl acrylate copolymer (EBA)-based semi-conductive shielding layer and the injection of charge carriers to insulation layer, the polar molecule maleic anhydride (MAH) is grafted onto EBA macromolecules by melt blending and thermal grafting. The resistivity temperature stability of the grafted semi-conductive composites, as well as the space charge distribution and direct current (DC) breakdown characteristics of cross-linked polyethylene (XLPE) insulation using the composites as the electrode is investigated. The results show that MAH grafting can significantly reduce the volume resistivity of semi-conductive composites, especially at a higher temperature, to suppress the PTC effect. And, the grafted semi-conductive composites can prevent the injection of charge carriers to XLPE insulation from the semi-conductive electrode to improve the space charge distribution and DC breakdown strength of XLPE insulation. The polar anhydride groups in the grafted MAH can enhance the interaction between EBA macromolecular chains and between EBA macromolecular chains and carbon black (CB) to improve the dispersion of CB in EBA matrix and the stability of the internal conductive network at the high temperature, improving the properties of EBA-based semi-conductive shielding layer and DC electrical properties of XLPE insulation layer.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"517-529"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12504","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12504","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To suppress the resistivity positive temperature coefficient (PTC) effect of ethylene-butyl acrylate copolymer (EBA)-based semi-conductive shielding layer and the injection of charge carriers to insulation layer, the polar molecule maleic anhydride (MAH) is grafted onto EBA macromolecules by melt blending and thermal grafting. The resistivity temperature stability of the grafted semi-conductive composites, as well as the space charge distribution and direct current (DC) breakdown characteristics of cross-linked polyethylene (XLPE) insulation using the composites as the electrode is investigated. The results show that MAH grafting can significantly reduce the volume resistivity of semi-conductive composites, especially at a higher temperature, to suppress the PTC effect. And, the grafted semi-conductive composites can prevent the injection of charge carriers to XLPE insulation from the semi-conductive electrode to improve the space charge distribution and DC breakdown strength of XLPE insulation. The polar anhydride groups in the grafted MAH can enhance the interaction between EBA macromolecular chains and between EBA macromolecular chains and carbon black (CB) to improve the dispersion of CB in EBA matrix and the stability of the internal conductive network at the high temperature, improving the properties of EBA-based semi-conductive shielding layer and DC electrical properties of XLPE insulation layer.

Abstract Image

马来酸酐接枝对半导电复合材料正温度系数效应及交联聚乙烯绝缘空间电荷注入的影响
为了抑制乙烯-丙烯酸丁酯共聚物(EBA)基半导电屏蔽层的电阻率正温度系数(PTC)效应和向绝缘层注入载流子,采用熔融共混和热接枝的方法将极性分子马来酸酐(MAH)接枝到EBA大分子上。研究了接枝半导电复合材料的电阻率温度稳定性,以及交联聚乙烯(XLPE)绝缘材料的空间电荷分布和直流击穿特性。结果表明,MAH接枝可以显著降低半导体复合材料的体积电阻率,特别是在较高温度下,抑制PTC效应。接枝的半导电复合材料可以防止电荷载流子从半导电电极注入XLPE绝缘,从而改善XLPE绝缘的空间电荷分布和直流击穿强度。接枝MAH中的极性酸酐基团增强了EBA大分子链之间以及EBA大分子链与炭黑(CB)之间的相互作用,改善了炭黑在EBA基体中的分散性和内部导电网络在高温下的稳定性,改善了EBA基半导电屏蔽层的性能和XLPE绝缘层的直流电学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信