Repair of defects in buffer layer of high voltage cable based on additive liquid silicone rubber material

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-04-11 DOI:10.1049/hve2.70021
Wenqing Zhou, Qihao Xiao, Yanyang Yin, Xiaodong Liu, Licheng Li, Gang Liu
{"title":"Repair of defects in buffer layer of high voltage cable based on additive liquid silicone rubber material","authors":"Wenqing Zhou,&nbsp;Qihao Xiao,&nbsp;Yanyang Yin,&nbsp;Xiaodong Liu,&nbsp;Licheng Li,&nbsp;Gang Liu","doi":"10.1049/hve2.70021","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the issue of defects in the buffer layers of high-voltage cables has garnered significant attention due to their widespread occurrence and the substantial potential damages they pose. Although progress has been made in understanding the mechanisms behind these defects and in developing detection methods, effective repair solutions remain limited. This study addresses this challenge by proposing a novel repair material: a two-component, additive liquid silicone rubber-based compound that utilises vinyl silicone oil as its base. The electrical, thermal, and mechanical properties of the cured silicone-based repair fluid are thoroughly analysed. To evaluate its effectiveness, an experimental platform was constructed using a 17-m-long, 110 kV retired cable with known buffer layer defects. A specialised injection process was developed to facilitate the application of the repair fluid. The thermal characteristics, buffer layer voltage distribution, and partial discharge behaviour of the defective cable were analysed both before and after the repair. The results indicate that following the repair, the cable's heat dissipation capacity under full load increased by 6.25%. Additionally, the buffer layer voltage at the rated voltage (<i>U</i><sub>0</sub>) decreased from 1.97 to 0.34 V, representing an 82.74% reduction. Notably, no partial discharge signals exceeding background noise were detected post-repair. This study demonstrates the effectiveness of the addition-cure liquid silicone rubber-based semi-conductive material in repairing cable buffer layer defects and provides valuable experimental support for its practical application in engineering.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"316-324"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70021","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the issue of defects in the buffer layers of high-voltage cables has garnered significant attention due to their widespread occurrence and the substantial potential damages they pose. Although progress has been made in understanding the mechanisms behind these defects and in developing detection methods, effective repair solutions remain limited. This study addresses this challenge by proposing a novel repair material: a two-component, additive liquid silicone rubber-based compound that utilises vinyl silicone oil as its base. The electrical, thermal, and mechanical properties of the cured silicone-based repair fluid are thoroughly analysed. To evaluate its effectiveness, an experimental platform was constructed using a 17-m-long, 110 kV retired cable with known buffer layer defects. A specialised injection process was developed to facilitate the application of the repair fluid. The thermal characteristics, buffer layer voltage distribution, and partial discharge behaviour of the defective cable were analysed both before and after the repair. The results indicate that following the repair, the cable's heat dissipation capacity under full load increased by 6.25%. Additionally, the buffer layer voltage at the rated voltage (U0) decreased from 1.97 to 0.34 V, representing an 82.74% reduction. Notably, no partial discharge signals exceeding background noise were detected post-repair. This study demonstrates the effectiveness of the addition-cure liquid silicone rubber-based semi-conductive material in repairing cable buffer layer defects and provides valuable experimental support for its practical application in engineering.

Abstract Image

添加剂型液态硅橡胶材料修复高压电缆缓冲层缺陷
近年来,高压电缆缓冲层缺陷问题因其普遍存在和潜在的巨大危害而备受关注。尽管在了解这些缺陷背后的机制和开发检测方法方面取得了进展,但有效的修复方案仍然有限。这项研究通过提出一种新的修复材料来解决这一挑战:一种双组分、添加剂液体硅橡胶基化合物,以乙烯基硅油为基础。对固化硅基修复液的电学、热学和力学性能进行了全面分析。为了评估其有效性,使用一根已知缓冲层缺陷的17 m长110 kV退役电缆构建了实验平台。开发了一种专门的注入工艺,以促进修复液的应用。分析了故障电缆修复前后的热特性、缓冲层电压分布和局部放电行为。结果表明,修复后电缆满负荷散热能力提高了6.25%。此外,在额定电压(U0)下,缓冲层电压从1.97 V降低到0.34 V,降低了82.74%。值得注意的是,修复后没有检测到超过背景噪声的局部放电信号。本研究验证了加固化液态硅橡胶基半导体材料修复电缆缓冲层缺陷的有效性,为其在工程上的实际应用提供了有价值的实验支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信