{"title":"Aspects of complexity in quantum evolutions on the Bloch sphere","authors":"Carlo Cafaro, Emma Clements, Abeer Alanazi","doi":"10.1140/epjp/s13360-025-06261-9","DOIUrl":null,"url":null,"abstract":"<div><p>We enhance our quantitative comprehension of the complexity associated with both time-optimal and time sub-optimal quantum Hamiltonian evolutions that connect arbitrary source and target states on the Bloch sphere, as recently presented in Cafaro (Nucl Phys B 1010: 116755, 2025). Initially, we examine each unitary Schrödinger quantum evolution selected through various metrics, such as path length, geodesic efficiency, speed efficiency, and the curvature coefficient of the corresponding quantum-mechanical trajectory that connects the source state to the target state on the Bloch sphere. Subsequently, we evaluate the selected evolutions using our proposed measure of complexity, as well as in relation to the concept of complexity length scale. The choice of both time-optimal and time sub-optimal evolutions, along with the selection of source and target states, enables us to conduct pertinent sanity checks that seek to validate the physical relevance of the framework supporting our proposed complexity measure. Our research suggests that, in general, efficient quantum evolutions possess a lower complexity than their inefficient counterparts. However, it is important to recognize that complexity is not solely determined by length; in fact, longer trajectories that are adequately curved may exhibit a complexity that is less than or equal to that of shorter trajectories with a lower curvature coefficient.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06261-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We enhance our quantitative comprehension of the complexity associated with both time-optimal and time sub-optimal quantum Hamiltonian evolutions that connect arbitrary source and target states on the Bloch sphere, as recently presented in Cafaro (Nucl Phys B 1010: 116755, 2025). Initially, we examine each unitary Schrödinger quantum evolution selected through various metrics, such as path length, geodesic efficiency, speed efficiency, and the curvature coefficient of the corresponding quantum-mechanical trajectory that connects the source state to the target state on the Bloch sphere. Subsequently, we evaluate the selected evolutions using our proposed measure of complexity, as well as in relation to the concept of complexity length scale. The choice of both time-optimal and time sub-optimal evolutions, along with the selection of source and target states, enables us to conduct pertinent sanity checks that seek to validate the physical relevance of the framework supporting our proposed complexity measure. Our research suggests that, in general, efficient quantum evolutions possess a lower complexity than their inefficient counterparts. However, it is important to recognize that complexity is not solely determined by length; in fact, longer trajectories that are adequately curved may exhibit a complexity that is less than or equal to that of shorter trajectories with a lower curvature coefficient.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.