{"title":"The role of β-phase on crack nucleation and propagation in dual phase zirconium polycrystals: a crystal plasticity finite element modeling","authors":"Saiedeh Marashi, Hamidreza Abdolvand","doi":"10.1007/s10704-025-00850-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to numerically investigate the nucleation and propagation of microcracks in dual phase Zirconium (Zr) containing both Hexagonal Close-Packed (HCP) α-Zr and Body Centered Cubic (BCC) β-Zr crystals. For this purpose, a subroutine that incorporates different damage criteria is coupled with a crystal plasticity finite element model to investigate the effects of crystals elastic and plastic anisotropy. Attention is given to the role of the BCC β-phase in the crack nucleation of notched zirconium polycrystals. First, the maximum shear strain accumulated on the predominant slip system is used as the crack initiation criterion. The modeling results reveal that for single phase HCP α-grains cracks lie on the prismatic planes, but for dual phase α/β cases, cracks may lie on either basal or prismatic planes depending on the α/β crystal orientations, and the adjacent β-phase features such as its thickness or distance from the notch. Moreover, numerical results indicate that the presence of thin layered β-phase hinders crack propagation, regardless of its geometrical or crystallographic features. The performance of other damage criteria is also discussed. Lastly, it is shown that in comparison to α-grains undergoing cyclic loads, the crack propagation rate is reduced in β-crystals.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00850-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to numerically investigate the nucleation and propagation of microcracks in dual phase Zirconium (Zr) containing both Hexagonal Close-Packed (HCP) α-Zr and Body Centered Cubic (BCC) β-Zr crystals. For this purpose, a subroutine that incorporates different damage criteria is coupled with a crystal plasticity finite element model to investigate the effects of crystals elastic and plastic anisotropy. Attention is given to the role of the BCC β-phase in the crack nucleation of notched zirconium polycrystals. First, the maximum shear strain accumulated on the predominant slip system is used as the crack initiation criterion. The modeling results reveal that for single phase HCP α-grains cracks lie on the prismatic planes, but for dual phase α/β cases, cracks may lie on either basal or prismatic planes depending on the α/β crystal orientations, and the adjacent β-phase features such as its thickness or distance from the notch. Moreover, numerical results indicate that the presence of thin layered β-phase hinders crack propagation, regardless of its geometrical or crystallographic features. The performance of other damage criteria is also discussed. Lastly, it is shown that in comparison to α-grains undergoing cyclic loads, the crack propagation rate is reduced in β-crystals.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.