CauseTerML: Causal Learning via Term Mining for Assessing Review Discrepancies

Wenjie Sun;Chengke Wu;Qinge Xiao;Junjie Jiang;Yuanjun Guo;Ying Bi;Xinyu Wu;Zhile Yang
{"title":"CauseTerML: Causal Learning via Term Mining for Assessing Review Discrepancies","authors":"Wenjie Sun;Chengke Wu;Qinge Xiao;Junjie Jiang;Yuanjun Guo;Ying Bi;Xinyu Wu;Zhile Yang","doi":"10.1109/TAI.2024.3512500","DOIUrl":null,"url":null,"abstract":"Innovation is a key driver of modern economic and technological development. Correct and equitable identification of innovation is essential for promoting market competitiveness and ensuring the optimal allocation of resources. Existing research on innovation evaluation mainly focuses on qualitative or quantitative evaluation of the results, while ignoring potential biases in the application process. This work investigates an unexplored issue in the field of innovation evaluation: Whether the technicality of the title of an application affects its degree of attention in the review process? The key lies in two aspects: how to evaluate the technicality of the title and how to quantify this effect. To achieve this goal, we combine the term extraction schemes and causal inference techniques by modelling the fairness detection task in a causal diagram, and propose a novel framework called CauseTerML. The framework can be applied to fairness detection in a variety of application scenarios. Extensive experiments on a real-world patent dataset validate the effectiveness of CauseTerML.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 5","pages":"1156-1170"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10782990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Innovation is a key driver of modern economic and technological development. Correct and equitable identification of innovation is essential for promoting market competitiveness and ensuring the optimal allocation of resources. Existing research on innovation evaluation mainly focuses on qualitative or quantitative evaluation of the results, while ignoring potential biases in the application process. This work investigates an unexplored issue in the field of innovation evaluation: Whether the technicality of the title of an application affects its degree of attention in the review process? The key lies in two aspects: how to evaluate the technicality of the title and how to quantify this effect. To achieve this goal, we combine the term extraction schemes and causal inference techniques by modelling the fairness detection task in a causal diagram, and propose a novel framework called CauseTerML. The framework can be applied to fairness detection in a variety of application scenarios. Extensive experiments on a real-world patent dataset validate the effectiveness of CauseTerML.
CauseTerML:通过术语挖掘来评估评审差异的因果学习
创新是现代经济科技发展的重要动力。正确、公平地识别创新是促进市场竞争力和确保资源优化配置的关键。现有的创新评价研究主要集中在对结果的定性或定量评价上,忽视了应用过程中可能存在的偏差。本研究探讨了创新评估领域的一个未被探索的问题:申请标题的技术性是否会影响其在审查过程中的关注程度?关键在于两个方面:如何评价标题的技术性和如何量化标题的效果。为了实现这一目标,我们通过在因果图中建模公平检测任务,将术语提取方案和因果推理技术结合起来,并提出了一个名为CauseTerML的新框架。该框架可用于各种应用场景的公平性检测。在真实世界的专利数据集上进行的大量实验验证了CauseTerML的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信