A Novel Hybrid Photonic Integration Scheme Based on Flip-Chip Bonding Combined With Vertical Coupling

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guojiong Li;Xiangyang Dai;Yuanhao Zhang;Liyuan Song;Panpan Yu;Minwen Xiang;Can Liu;Juan Xia;Qiaoyin Lu;Weihua Guo
{"title":"A Novel Hybrid Photonic Integration Scheme Based on Flip-Chip Bonding Combined With Vertical Coupling","authors":"Guojiong Li;Xiangyang Dai;Yuanhao Zhang;Liyuan Song;Panpan Yu;Minwen Xiang;Can Liu;Juan Xia;Qiaoyin Lu;Weihua Guo","doi":"10.1109/JPHOT.2025.3560668","DOIUrl":null,"url":null,"abstract":"A hybrid photonic integration scheme based on flip-chip bonding combined with vertical coupling is presented in this work, offering a novel solution for the integration of active and passive chips. An offset quantum-well laser is flipped and bonded into the pre-set cavity of the passive chip. The light emitted from the laser propagates through a taper into the passive chip. The proposed scheme utilizes only the existing processes, eliminating the need for additional process development. Furthermore, it preserves the performance of the laser while providing high tolerance. Simulations indicate that the coupling tolerance for 90% coupling efficiency is approximately ±1.5 μm in the lateral direction with the longitudinal tolerance exceeding 20 μm. The coupling efficiency remains stable across the O-band. This scheme is adaptable for integrating various photonic chips such as tunable lasers, high-speed modulators and detectors, and laser radar systems.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964542","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964542/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A hybrid photonic integration scheme based on flip-chip bonding combined with vertical coupling is presented in this work, offering a novel solution for the integration of active and passive chips. An offset quantum-well laser is flipped and bonded into the pre-set cavity of the passive chip. The light emitted from the laser propagates through a taper into the passive chip. The proposed scheme utilizes only the existing processes, eliminating the need for additional process development. Furthermore, it preserves the performance of the laser while providing high tolerance. Simulations indicate that the coupling tolerance for 90% coupling efficiency is approximately ±1.5 μm in the lateral direction with the longitudinal tolerance exceeding 20 μm. The coupling efficiency remains stable across the O-band. This scheme is adaptable for integrating various photonic chips such as tunable lasers, high-speed modulators and detectors, and laser radar systems.
一种基于倒装键合与垂直耦合的新型混合光子集成方案
本文提出了一种基于倒装键合和垂直耦合的混合光子集成方案,为主动式和无源式芯片的集成提供了一种新的解决方案。将偏置量子阱激光器翻转并键合到被动芯片的预设腔中。激光器发出的光通过一个锥体传播到无源芯片。所建议的方案仅利用现有工艺,不需要额外的工艺开发。此外,它在提供高容忍度的同时保留了激光器的性能。仿真结果表明,实现90%耦合效率的横向公差约为±1.5 μm,纵向公差超过20 μm。在整个o波段,耦合效率保持稳定。该方案适用于集成各种光子芯片,如可调谐激光器、高速调制器和探测器、激光雷达系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信