Eole Valence , Bastien Charonnat , Michel Baraër , Kaiyuan Wang , Jeffrey M. McKenzie
{"title":"Investigating emerging boulder impacts on snowpack ablation","authors":"Eole Valence , Bastien Charonnat , Michel Baraër , Kaiyuan Wang , Jeffrey M. McKenzie","doi":"10.1016/j.coldregions.2025.104534","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of emergent boulders within a thinning and melting snowpack remains poorly understood. Our research examines how boulders, exposed by melting snowpack influence the spatial and temporal patterns of snow ablation in the Shár Shaw Tagà Valley, Yukon, Canada. A multimethod approach, combining thermal infrared time-lapse imaging, drone-based photogrammetry, and terrestrial laser scanning, was used to monitor snow surface temperature, elevation changes, and melt variability. This approach underscores the importance of comprehensive techniques in assessing the spatial and temporal variability of snow surface temperature and topography. Results indicate that boulders accelerate snowmelt in their vicinity during the ablation season, with snow surface thermal characteristics shaped by local terrain and meteorological conditions. The fastest rates of ablation occur during periods of mild weather with no precipitation. These findings highlight the role of boulders as micro-scale heat sources that can modify energy fluxes and influence broader melt patterns in subarctic alpine environments. Understanding these processes is essential for improving snowmelt modelling and predicting hydrological changes in mountain regions affected by climate change.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"237 ","pages":"Article 104534"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X2500117X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of emergent boulders within a thinning and melting snowpack remains poorly understood. Our research examines how boulders, exposed by melting snowpack influence the spatial and temporal patterns of snow ablation in the Shár Shaw Tagà Valley, Yukon, Canada. A multimethod approach, combining thermal infrared time-lapse imaging, drone-based photogrammetry, and terrestrial laser scanning, was used to monitor snow surface temperature, elevation changes, and melt variability. This approach underscores the importance of comprehensive techniques in assessing the spatial and temporal variability of snow surface temperature and topography. Results indicate that boulders accelerate snowmelt in their vicinity during the ablation season, with snow surface thermal characteristics shaped by local terrain and meteorological conditions. The fastest rates of ablation occur during periods of mild weather with no precipitation. These findings highlight the role of boulders as micro-scale heat sources that can modify energy fluxes and influence broader melt patterns in subarctic alpine environments. Understanding these processes is essential for improving snowmelt modelling and predicting hydrological changes in mountain regions affected by climate change.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.