Modelling and optimization of a hybrid photovoltaic-parabolic trough concentrated solar power plant: Technical, economic, and environmental

IF 8 Q1 ENERGY & FUELS
Montaser Mahmoud , Salah Haridy , Ayman Mdallal , Abdul Hai Alami , Mohammad Ali Abdelkareem , Abdul Ghani Olabi
{"title":"Modelling and optimization of a hybrid photovoltaic-parabolic trough concentrated solar power plant: Technical, economic, and environmental","authors":"Montaser Mahmoud ,&nbsp;Salah Haridy ,&nbsp;Ayman Mdallal ,&nbsp;Abdul Hai Alami ,&nbsp;Mohammad Ali Abdelkareem ,&nbsp;Abdul Ghani Olabi","doi":"10.1016/j.nexus.2025.100436","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents detailed guidelines for modeling and optimizing an integrated photovoltaic-concentrated solar power (PV-CSP) plant using response surface methodology (RSM), tailored to the climate of Sharjah, UAE. Five factors are considered in the optimization, which are the percentage share of PV/CSP (A), PV tilt angle (B), PV spacing (C), CSP solar multiple (D), and thermal storage size (E), with corresponding ranges of 10–90% (equivalent to 10 to 90 MW), 20–40°, 1–7 m, 2.5–7.5, and 5–20 h, respectively. The research utilizes three software tools: System Advisor Model (SAM) for CSP, PV<sub>syst</sub> for PV, and Design-Expert for RSM. Based on the analysis of variance (ANOVA), seven factors (A, C, E, D², AC, AE, and DE) are significant for energy output, while eight (A, C, D, E, AC, AD, AE, and DE) are significant for LCOE. Through multi-objective optimization aimed at maximizing energy production while minimizing LCOE and land area, the results indicate that the optimal configuration comprises 38.6% CSP and 61.4% PV. This configuration achieves an energy output of 3.64 × 10<sup>8</sup> kWh/year, a LCOE of $0.033/kWh, and a land area of 743.46 acres. These results were achieved with B, C, D, and E of 27.18°, 5.45 m, 4.41, and 15.49 h, respectively.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"18 ","pages":"Article 100436"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents detailed guidelines for modeling and optimizing an integrated photovoltaic-concentrated solar power (PV-CSP) plant using response surface methodology (RSM), tailored to the climate of Sharjah, UAE. Five factors are considered in the optimization, which are the percentage share of PV/CSP (A), PV tilt angle (B), PV spacing (C), CSP solar multiple (D), and thermal storage size (E), with corresponding ranges of 10–90% (equivalent to 10 to 90 MW), 20–40°, 1–7 m, 2.5–7.5, and 5–20 h, respectively. The research utilizes three software tools: System Advisor Model (SAM) for CSP, PVsyst for PV, and Design-Expert for RSM. Based on the analysis of variance (ANOVA), seven factors (A, C, E, D², AC, AE, and DE) are significant for energy output, while eight (A, C, D, E, AC, AD, AE, and DE) are significant for LCOE. Through multi-objective optimization aimed at maximizing energy production while minimizing LCOE and land area, the results indicate that the optimal configuration comprises 38.6% CSP and 61.4% PV. This configuration achieves an energy output of 3.64 × 108 kWh/year, a LCOE of $0.033/kWh, and a land area of 743.46 acres. These results were achieved with B, C, D, and E of 27.18°, 5.45 m, 4.41, and 15.49 h, respectively.
光伏-抛物槽式聚光太阳能混合电站的建模与优化:技术、经济和环境
本研究提出了使用响应面方法(RSM)建模和优化集成光伏-聚光太阳能(PV-CSP)电厂的详细指导方针,该方法针对阿联酋沙迦的气候进行了量身定制。优化考虑了光伏/光热发电比例(A)、光伏倾斜角度(B)、光伏间距(C)、光热发电倍率(D)和蓄热规模(E) 5个因素,对应范围分别为10 - 90%(相当于10 - 90mw)、20-40°、1-7 m、2.5-7.5和5-20 h。该研究使用了三种软件工具:CSP的系统顾问模型(SAM), PV的PVsyst和RSM的Design-Expert。方差分析显示,7个因子(A、C、E、D²、AC、AE和DE)对能量输出有显著影响,8个因子(A、C、D、E、AC、AD、AE和DE)对LCOE有显著影响。通过以发电量最大化、LCOE和占地面积最小为目标的多目标优化,结果表明,最优配置为光热发电38.6%,光伏发电61.4%。该配置实现了3.64 × 108千瓦时/年的能源输出,LCOE为0.033美元/千瓦时,土地面积为743.46英亩。B、C、D和E分别为27.18°、5.45 m、4.41和15.49 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信