{"title":"Network toxicological analysis of sodium dehydroacetate in food safety","authors":"Jing Jin , Yan Xue , Liang Tian","doi":"10.1016/j.fct.2025.115469","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium dehydroacetate (Na-DHA), a synthetic preservative under tightened regulations, was evaluated for multi-organ toxicity using network toxicology. ADMETlab3.0 predicted genotoxicity, hepatotoxicity, and carcinogenicity risks. Target mining identified 13 cancer-related, 11 liver injury-related, and 8 genotoxicity-related core genes, with shared hubs (ALOX5, PTGS2, SMAD3, TNF) across pathologies. Functional analyses revealed inflammation, oxidative stress, and immune dysregulation as central mechanisms. KEGG pathway analysis linked cancer/liver injury to AGE-RAGE signaling (TNF, NOX4) and genotoxicity to efferocytosis impairment (PTGS2, ALOX5), suggesting DNA repair disruption. The integrated network demonstrated Na-DHA's pleiotropic effects through convergent pathways, transcending organ-specific toxicity. This systemic profile challenges conventional single-endpoint assessments, advocating comprehensive multi-organ risk evaluation.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"201 ","pages":"Article 115469"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525002376","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium dehydroacetate (Na-DHA), a synthetic preservative under tightened regulations, was evaluated for multi-organ toxicity using network toxicology. ADMETlab3.0 predicted genotoxicity, hepatotoxicity, and carcinogenicity risks. Target mining identified 13 cancer-related, 11 liver injury-related, and 8 genotoxicity-related core genes, with shared hubs (ALOX5, PTGS2, SMAD3, TNF) across pathologies. Functional analyses revealed inflammation, oxidative stress, and immune dysregulation as central mechanisms. KEGG pathway analysis linked cancer/liver injury to AGE-RAGE signaling (TNF, NOX4) and genotoxicity to efferocytosis impairment (PTGS2, ALOX5), suggesting DNA repair disruption. The integrated network demonstrated Na-DHA's pleiotropic effects through convergent pathways, transcending organ-specific toxicity. This systemic profile challenges conventional single-endpoint assessments, advocating comprehensive multi-organ risk evaluation.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.