Flexible piezoelectric energy harvester made of vertically-aligned ZnO nanowires hydrothermally-grown by template-assisted synthesis in poled PVDF

Marie Clémence Sigallon , Adrien Baillard , Vincent Consonni , Florian Aubrit , Natalia Potrzebowska , Romain Grasset , Mohamed Tabellout , Noelle Gogneau , Eliott Sarrey , Jean-Eric Wegrowe , Marie-Claude Clochard
{"title":"Flexible piezoelectric energy harvester made of vertically-aligned ZnO nanowires hydrothermally-grown by template-assisted synthesis in poled PVDF","authors":"Marie Clémence Sigallon ,&nbsp;Adrien Baillard ,&nbsp;Vincent Consonni ,&nbsp;Florian Aubrit ,&nbsp;Natalia Potrzebowska ,&nbsp;Romain Grasset ,&nbsp;Mohamed Tabellout ,&nbsp;Noelle Gogneau ,&nbsp;Eliott Sarrey ,&nbsp;Jean-Eric Wegrowe ,&nbsp;Marie-Claude Clochard","doi":"10.1016/j.nwnano.2025.100112","DOIUrl":null,"url":null,"abstract":"<div><div>The beneficial effect of the hydrothermal method on the morphology and piezoelectric performance of zinc oxide/polyvinylidene fluoride (ZnO/PVDF) composite thin membranes (10 μm-thick) is demonstrated. In this work, high aspect ratio vertically aligned ZnO nanowires were successfully grown on an Au seed layer to create a Schottky-like contact by template-assisted synthesis inside the cylindrical nanopores of a poled β-PVDF. Swift heavy ions irradiation was firstly used to create tracks of damages in this poled β-PVDF thin films. A subsequent chemical etching in alkaline medium revealed these ion-tracks to form dense and statistical arrays of cylindrical nanopores (10<sup>9</sup> pores cm<sup>−2</sup>) along its thickness. Resulting ZnO/PVDF composites were characterized by infrared spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, atomic force microscopy, reflectance spectroscopy, dielectric measurements and piezoelectric analysis. Vertically aligned ZnO nanowires grown in low-supersaturation conditions exhibited an ideal microstructure for enhancing the piezoelectric performance of β-PVDF, <em>i.e.</em> hexagonal wurtzite structure. From piezoelectric analysis in bending mode, the output power of ZnO/PVDF composites was plotted against 8 resistances ranging from 10<sup>5</sup> to 10<sup>6</sup> Ω and fitted up to 10<sup>8</sup> Ω. A maximum power density of 1.90 μW cm<sup>−2</sup> (<em>i.e.</em> 380 µW cm<sup>−3</sup> <em>N</em><sup>−1</sup>) at 2.10<sup>6</sup> Ω was found to be 60 ± 10 % higher than of pristine poled β-PVDF. The performance of these ZnO/PVDF composites may be due to the combined effects of Surface Fermi Level Pinning phenomenon, Schottky-like contact and dipole alignment. It thus reveals a very promising transducer in the renewable energy application of electromechanical energy conversion.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"10 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The beneficial effect of the hydrothermal method on the morphology and piezoelectric performance of zinc oxide/polyvinylidene fluoride (ZnO/PVDF) composite thin membranes (10 μm-thick) is demonstrated. In this work, high aspect ratio vertically aligned ZnO nanowires were successfully grown on an Au seed layer to create a Schottky-like contact by template-assisted synthesis inside the cylindrical nanopores of a poled β-PVDF. Swift heavy ions irradiation was firstly used to create tracks of damages in this poled β-PVDF thin films. A subsequent chemical etching in alkaline medium revealed these ion-tracks to form dense and statistical arrays of cylindrical nanopores (109 pores cm−2) along its thickness. Resulting ZnO/PVDF composites were characterized by infrared spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, atomic force microscopy, reflectance spectroscopy, dielectric measurements and piezoelectric analysis. Vertically aligned ZnO nanowires grown in low-supersaturation conditions exhibited an ideal microstructure for enhancing the piezoelectric performance of β-PVDF, i.e. hexagonal wurtzite structure. From piezoelectric analysis in bending mode, the output power of ZnO/PVDF composites was plotted against 8 resistances ranging from 105 to 106 Ω and fitted up to 108 Ω. A maximum power density of 1.90 μW cm−2 (i.e. 380 µW cm−3 N−1) at 2.106 Ω was found to be 60 ± 10 % higher than of pristine poled β-PVDF. The performance of these ZnO/PVDF composites may be due to the combined effects of Surface Fermi Level Pinning phenomenon, Schottky-like contact and dipole alignment. It thus reveals a very promising transducer in the renewable energy application of electromechanical energy conversion.

Abstract Image

垂直排列ZnO纳米线在极性PVDF中经模板辅助合成制备的柔性压电能量收集器
研究了水热法对氧化锌/聚偏氟乙烯(ZnO/PVDF)复合薄膜(10 μm厚)的形貌和压电性能的有利影响。在这项工作中,通过模板辅助合成,成功地在Au种子层上生长了高纵横比垂直排列的ZnO纳米线,并在极性β-PVDF的圆柱纳米孔内形成了肖特基式接触。首次采用快速重离子辐照技术在该极性β-PVDF薄膜上制备了损伤轨迹。随后在碱性介质中进行化学蚀刻,发现这些离子轨迹沿其厚度形成密集的圆柱形纳米孔阵列(109个孔cm - 2)。采用红外光谱、掠入射x射线衍射、扫描和透射电子显微镜、原子力显微镜、反射光谱、介电测量和压电分析对ZnO/PVDF复合材料进行了表征。在低过饱和条件下生长的垂直排列ZnO纳米线具有提高β-PVDF压电性能的理想微结构,即六方纤锌矿结构。通过弯曲模式下的压电分析,绘制了ZnO/PVDF复合材料在105 ~ 106 Ω的8个电阻下的输出功率图,并拟合到108 Ω。在2.106 Ω处的最大功率密度为1.90 μW cm−2(即380 μW cm−3 N−1),比原始极性β-PVDF高60±10%。这些ZnO/PVDF复合材料的性能可能是由于表面费米能级钉钉现象、肖特基类接触和偶极子排列的综合作用。从而揭示了一种在可再生能源机电能量转换应用中非常有前途的换能器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信