Afton M. Bierlich , Irene Sophia Plank , Nanja T. Scheel , Daniel Keeser , Christine M. Falter-Wagner
{"title":"Neural processing of social reciprocity in autism","authors":"Afton M. Bierlich , Irene Sophia Plank , Nanja T. Scheel , Daniel Keeser , Christine M. Falter-Wagner","doi":"10.1016/j.nicl.2025.103793","DOIUrl":null,"url":null,"abstract":"<div><div>Social reciprocity and interpersonal synchrony implicitly mediate social interactions to facilitate natural exchanges. These processes are altered in autism, but it is unclear how such alterations manifest at the neural level during social interaction processing. Using task-based fMRI, we investigated the neural correlates of interpersonal synchrony during basic reciprocal interactions in a preregistered study. Participants communicated with a virtual partner by sending visual signals. Analyses showed comparable activation patterns and experienced synchrony ratings between autistic and non-autistic participants, as well as between interactions with virtual partners who had high or low synchronous responses. An exploratory whole brain analysis for the effect of task revealed significant activation of the inferior frontal gyrus, insular cortex, and anterior inferior parietal lobe; areas associated with cognitive control, rhythmic temporal coordination, and action observation. This activation was independent of the virtual partner’s response synchrony and was similar for autistic and non-autistic participants. These results provide an initial look into the neural basis of processing social reciprocity in autism, particularly when individuals are part of an interaction, and hint that the neural processing of social reciprocity may be spared in autism when their partners’ behavior is predictable.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"46 ","pages":"Article 103793"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225000634","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Social reciprocity and interpersonal synchrony implicitly mediate social interactions to facilitate natural exchanges. These processes are altered in autism, but it is unclear how such alterations manifest at the neural level during social interaction processing. Using task-based fMRI, we investigated the neural correlates of interpersonal synchrony during basic reciprocal interactions in a preregistered study. Participants communicated with a virtual partner by sending visual signals. Analyses showed comparable activation patterns and experienced synchrony ratings between autistic and non-autistic participants, as well as between interactions with virtual partners who had high or low synchronous responses. An exploratory whole brain analysis for the effect of task revealed significant activation of the inferior frontal gyrus, insular cortex, and anterior inferior parietal lobe; areas associated with cognitive control, rhythmic temporal coordination, and action observation. This activation was independent of the virtual partner’s response synchrony and was similar for autistic and non-autistic participants. These results provide an initial look into the neural basis of processing social reciprocity in autism, particularly when individuals are part of an interaction, and hint that the neural processing of social reciprocity may be spared in autism when their partners’ behavior is predictable.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.