Yunxia Fu , Xi Rui , Shumin Zhu , Chenqu Guo , Haoyang Li , Zhenhao Pan , Xuanhao Wu , Wenpeng He
{"title":"Research status of regenerative difficulties after central nervous system injury","authors":"Yunxia Fu , Xi Rui , Shumin Zhu , Chenqu Guo , Haoyang Li , Zhenhao Pan , Xuanhao Wu , Wenpeng He","doi":"10.1016/j.reth.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple studies have shown that permanent functional disabilities caused after nerve damage are mainly due to the limited ability of damaged neurons in the central nervous system (CNS) to regenerate axons and re-establish functional connections. Most axons in the CNS of adult mammals cannot reactivate their intrinsic growth program after injury, making axonal regeneration difficult when damaged. This article provides a systematic review of the response processes following CNS injury and the factors affecting repair and regeneration, focusing on the molecular mechanisms that regulate the regeneration of damaged axons, in hopes of offering new insights for the repair of CNS injuries.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"29 ","pages":"Pages 493-498"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000872","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple studies have shown that permanent functional disabilities caused after nerve damage are mainly due to the limited ability of damaged neurons in the central nervous system (CNS) to regenerate axons and re-establish functional connections. Most axons in the CNS of adult mammals cannot reactivate their intrinsic growth program after injury, making axonal regeneration difficult when damaged. This article provides a systematic review of the response processes following CNS injury and the factors affecting repair and regeneration, focusing on the molecular mechanisms that regulate the regeneration of damaged axons, in hopes of offering new insights for the repair of CNS injuries.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.