Thermal management of photovoltaic panels using configurations of spray cooling systems

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Fatih Bayrak, Alişan Gönül, Muhammet Camci
{"title":"Thermal management of photovoltaic panels using configurations of spray cooling systems","authors":"Fatih Bayrak,&nbsp;Alişan Gönül,&nbsp;Muhammet Camci","doi":"10.1016/j.applthermaleng.2025.126656","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic panels suffer from significant efficiency losses at elevated temperatures, particularly in hot and arid environments. Effective thermal management is therefore essential to maximize energy output and extend system lifetime, as rising cell temperatures severely reduce photovoltaic efficiency. This study investigates the use of spray cooling systems to enhance photovoltaic panel performance by lowering surface temperatures as a potential solution. It experimentally evaluates 3-nozzle and 6-nozzle configurations using different nozzle diameters (0.2 mm, 0.4 mm, 0.6 mm) and spray distances (150 mm, 200 mm, 250 mm). The results show that spray cooling substantially reduces panel surface temperatures and increases power output. The best performance is achieved with the 6-nozzle system equipped with 0.6 mm nozzles at a 250 mm distance, yielding a 47.2 % reduction in surface temperature and a 30.7 % increase in power output. Thermal imaging confirms that this configuration provides a more uniform surface temperature distribution and mitigates hotspot formation compared to the 3-nozzle system. This work offers a comprehensive experimental analysis of nozzle number, diameter, and spray distance, and demonstrates the strong potential of optimized spray cooling systems to significantly enhance photovoltaic performance in high-temperature and dry climatic zones.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126656"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125012487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic panels suffer from significant efficiency losses at elevated temperatures, particularly in hot and arid environments. Effective thermal management is therefore essential to maximize energy output and extend system lifetime, as rising cell temperatures severely reduce photovoltaic efficiency. This study investigates the use of spray cooling systems to enhance photovoltaic panel performance by lowering surface temperatures as a potential solution. It experimentally evaluates 3-nozzle and 6-nozzle configurations using different nozzle diameters (0.2 mm, 0.4 mm, 0.6 mm) and spray distances (150 mm, 200 mm, 250 mm). The results show that spray cooling substantially reduces panel surface temperatures and increases power output. The best performance is achieved with the 6-nozzle system equipped with 0.6 mm nozzles at a 250 mm distance, yielding a 47.2 % reduction in surface temperature and a 30.7 % increase in power output. Thermal imaging confirms that this configuration provides a more uniform surface temperature distribution and mitigates hotspot formation compared to the 3-nozzle system. This work offers a comprehensive experimental analysis of nozzle number, diameter, and spray distance, and demonstrates the strong potential of optimized spray cooling systems to significantly enhance photovoltaic performance in high-temperature and dry climatic zones.

Abstract Image

使用喷雾冷却系统配置的光伏板热管理
在高温下,特别是在炎热和干旱的环境中,光伏板的效率损失很大。因此,有效的热管理对于最大限度地提高能量输出和延长系统寿命至关重要,因为电池温度的上升严重降低了光伏效率。本研究探讨了使用喷雾冷却系统通过降低表面温度来提高光伏板的性能作为一种潜在的解决方案。实验评估了使用不同喷嘴直径(0.2 mm、0.4 mm、0.6 mm)和喷射距离(150 mm、200 mm、250 mm)的3喷嘴和6喷嘴配置。结果表明,喷雾冷却大大降低了面板表面温度,提高了功率输出。当6喷嘴系统在250毫米的距离上配置0.6毫米的喷嘴时,可以实现最佳性能,使表面温度降低47.2%,功率输出增加30.7%。热成像证实,与3喷嘴系统相比,这种配置提供了更均匀的表面温度分布,并减轻了热点的形成。本文对喷嘴数量、直径和喷雾距离进行了全面的实验分析,证明了优化后的喷雾冷却系统在高温干燥气候区显著提高光伏性能的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信