{"title":"S cone increments and decrements: Nearly-linear perceptual scales and variable noise","authors":"Yangyi Shi, Rhea T. Eskew Jr.","doi":"10.1016/j.visres.2025.108613","DOIUrl":null,"url":null,"abstract":"<div><div>Two psychophysical experiments investigated perceptual differences between increases and decreases in stimulation of the short-wavelength (S) cone photoreceptors. In Experiment 1, observers’ suprathreshold perceptual scale responses to S cone stimulation were estimated using the Maximum Likelihood Difference Scaling (MLDS) procedure. In Experiment 2, observers’ pedestal discrimination thresholds were measured with a two alternative forced choice (2AFC) method. Both experiments were performed using incremental (S+) and decremental (S−) contrasts separately. Substantial asymmetry between S+ and S− was found in pedestal discrimination thresholds, but not in S+ and S− perceptual scales: perceived S cone contrast was nearly linear with S cone contrast for both polarities. To reconcile perceptual scales and thresholds, a model is proposed in which the noise in the S cone pathway is assumed to be proportional to the square root of stimulus contrast. The model works well for both the perceptual scales and forced-choice discrimination, indicating that S+ and S− signals are processed in an asymmetrical way, likely due to the physiological differences between S ON and S OFF pathways.</div></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"231 ","pages":"Article 108613"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698925000744","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Two psychophysical experiments investigated perceptual differences between increases and decreases in stimulation of the short-wavelength (S) cone photoreceptors. In Experiment 1, observers’ suprathreshold perceptual scale responses to S cone stimulation were estimated using the Maximum Likelihood Difference Scaling (MLDS) procedure. In Experiment 2, observers’ pedestal discrimination thresholds were measured with a two alternative forced choice (2AFC) method. Both experiments were performed using incremental (S+) and decremental (S−) contrasts separately. Substantial asymmetry between S+ and S− was found in pedestal discrimination thresholds, but not in S+ and S− perceptual scales: perceived S cone contrast was nearly linear with S cone contrast for both polarities. To reconcile perceptual scales and thresholds, a model is proposed in which the noise in the S cone pathway is assumed to be proportional to the square root of stimulus contrast. The model works well for both the perceptual scales and forced-choice discrimination, indicating that S+ and S− signals are processed in an asymmetrical way, likely due to the physiological differences between S ON and S OFF pathways.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.