{"title":"Construction of hydrophobic CuCl@AC–PTFE composites with an enhanced Cu(I) stability for efficient CO adsorption","authors":"Jingru Dou, Yingxuan Wen, Fangfang Zhang, Falong Shan, Shougui Wang, Jipeng Dong, Fei Gao, Guanghui Chen","doi":"10.1016/j.cjche.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>Cu(I) based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu<sup>+</sup> ions to oxygen and moisture in the humid air. In this study, in order to improve its antioxidant performance, hydrophobic Cu(I) based adsorbents were fabricated using polytetrafluoroethylene (PTFE) for the hydrophobic modification, effectively avoiding the contact of CuCl active species with moisture, thereby inhibiting the oxidation of the Cu(I) based adsorbents. The successful introduction of PTFE into the activated carbon (AC) carrier significantly improves the hydrophobicity of the adsorbent. The optimal adsorbent CuCl(6)@AC–PTFE(0.10%) with the CuCl loading of 6 mmol·g<sup>−1</sup> and the PTFE mass concentration of 0.10% exhibits an excellent CO adsorption capacity of 3.61 mmol·g<sup>−1</sup> (303 K, 500 kPa) as well as high CO/CO<sub>2</sub> and CO/N<sub>2</sub> adsorption selectivities of 29 and 203 (303 K, 100 kPa). Particularly, compared with the unmodified adsorbents, the antioxidant performance of modified adsorbent CuCl(6)@AC–PTFE(0.10%) is significantly improved, holding 86% of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%, making the fabricated composite a promising adsorbent for CO separation.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"81 ","pages":"Pages 23-31"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125000771","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cu(I) based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu+ ions to oxygen and moisture in the humid air. In this study, in order to improve its antioxidant performance, hydrophobic Cu(I) based adsorbents were fabricated using polytetrafluoroethylene (PTFE) for the hydrophobic modification, effectively avoiding the contact of CuCl active species with moisture, thereby inhibiting the oxidation of the Cu(I) based adsorbents. The successful introduction of PTFE into the activated carbon (AC) carrier significantly improves the hydrophobicity of the adsorbent. The optimal adsorbent CuCl(6)@AC–PTFE(0.10%) with the CuCl loading of 6 mmol·g−1 and the PTFE mass concentration of 0.10% exhibits an excellent CO adsorption capacity of 3.61 mmol·g−1 (303 K, 500 kPa) as well as high CO/CO2 and CO/N2 adsorption selectivities of 29 and 203 (303 K, 100 kPa). Particularly, compared with the unmodified adsorbents, the antioxidant performance of modified adsorbent CuCl(6)@AC–PTFE(0.10%) is significantly improved, holding 86% of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%, making the fabricated composite a promising adsorbent for CO separation.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.