Eco-friendly synthesis of silver nanoparticles using the fungus Alternaria sp. OP242500: Optimization through box-Behnken design

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Saydeh Fatemeh Hoseini-Nilaki , Morahem Ashengroph , Musa Moetasam Zorab
{"title":"Eco-friendly synthesis of silver nanoparticles using the fungus Alternaria sp. OP242500: Optimization through box-Behnken design","authors":"Saydeh Fatemeh Hoseini-Nilaki ,&nbsp;Morahem Ashengroph ,&nbsp;Musa Moetasam Zorab","doi":"10.1016/j.rechem.2025.102265","DOIUrl":null,"url":null,"abstract":"<div><div>Fungi efficiently biosynthesize nanoparticles by utilizing their enzymatic and metabolic functions to reduce metal ions and improve colloidal stability. This study presents a sustainable method for producing silver nanoparticles through a cell-free extract from the fungus <em>Alternaria</em> sp. OP242500, emphasizing its value for green nanotechnology applications. Key synthesis parameters, including silver acetate concentration, pH, temperature, and incubation time, were optimized using the Box-Behnken design. Under optimal conditions (5.5 mM silver acetate, pH 7.8, 33.5 °C, and 96 h), the synthesized nanoparticles achieved an optical density of 2.11 at 430 nm, closely matching the predicted value of 2.15 with an accuracy of 98.14 %<strong>.</strong> Structural and stability analyses conducted through UV–visible spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential analysis, and Fourier-transform infrared spectroscopy confirmed the formation of uniformly spherical, well-crystallized silver nanoparticles with a face-centered cubic structure. The biosynthesized nanoparticles exhibited sizes ranging from 10.9 to 68.5 nm and displayed excellent colloidal stability, as evidenced by a zeta potential value of −20.8 mV. These findings demonstrate the efficiency of the fungal extract-based synthesis method and underscore its promising applications in medicine, nanotechnology, and environmental science.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102265"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625002486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungi efficiently biosynthesize nanoparticles by utilizing their enzymatic and metabolic functions to reduce metal ions and improve colloidal stability. This study presents a sustainable method for producing silver nanoparticles through a cell-free extract from the fungus Alternaria sp. OP242500, emphasizing its value for green nanotechnology applications. Key synthesis parameters, including silver acetate concentration, pH, temperature, and incubation time, were optimized using the Box-Behnken design. Under optimal conditions (5.5 mM silver acetate, pH 7.8, 33.5 °C, and 96 h), the synthesized nanoparticles achieved an optical density of 2.11 at 430 nm, closely matching the predicted value of 2.15 with an accuracy of 98.14 %. Structural and stability analyses conducted through UV–visible spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential analysis, and Fourier-transform infrared spectroscopy confirmed the formation of uniformly spherical, well-crystallized silver nanoparticles with a face-centered cubic structure. The biosynthesized nanoparticles exhibited sizes ranging from 10.9 to 68.5 nm and displayed excellent colloidal stability, as evidenced by a zeta potential value of −20.8 mV. These findings demonstrate the efficiency of the fungal extract-based synthesis method and underscore its promising applications in medicine, nanotechnology, and environmental science.

Abstract Image

利用真菌Alternaria sp. OP242500环保合成纳米银:通过box-Behnken设计优化
真菌利用其酶和代谢功能有效地合成纳米颗粒,减少金属离子,提高胶体稳定性。本研究提出了一种利用真菌Alternaria sp. OP242500的无细胞提取物生产纳米银的可持续方法,强调了其在绿色纳米技术应用中的价值。采用Box-Behnken设计优化乙酸银浓度、pH、温度、孵育时间等关键合成参数。在最佳条件下(5.5 mM醋酸银,pH 7.8, 33.5°C, 96 h),合成的纳米粒子在430 nm处的光密度为2.11,与预测值2.15非常接近,精度为98.14%。通过紫外可见光谱、扫描电镜、x射线衍射、zeta电位分析和傅里叶变换红外光谱进行的结构和稳定性分析证实,形成了均匀球形、结晶良好、面心立方结构的银纳米颗粒。生物合成的纳米颗粒尺寸在10.9 ~ 68.5 nm之间,具有良好的胶体稳定性,zeta电位值为- 20.8 mV。这些发现证明了基于真菌提取物的合成方法的有效性,并强调了其在医学、纳米技术和环境科学方面的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信