Lindsay F. Smegal , Marion Baillet , Christoph Schneider , Roos J. Jutten , Rory Boyle , Dorene M. Rentz , Keith A. Johnson , Reisa A. Sperling , Kathryn V. Papp , Heidi I.L. Jacobs
{"title":"Lower locus coeruleus integrity is associated with diminished practice effects in clinically unimpaired older individuals","authors":"Lindsay F. Smegal , Marion Baillet , Christoph Schneider , Roos J. Jutten , Rory Boyle , Dorene M. Rentz , Keith A. Johnson , Reisa A. Sperling , Kathryn V. Papp , Heidi I.L. Jacobs","doi":"10.1016/j.neurobiolaging.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>The locus coeruleus (LC), one of the earliest structures affected by tau pathology in Alzheimer’s disease (AD), plays an important role in modulating arousal and learning. In asymptomatic early stages of AD, more sensitive measures to identify subtle cognitive changes are needed. Previous studies indicate that practice effects can signal initial AD-related learning deficits. Here, we assessed the association between LC integrity and practice effects. We combined dedicated LC-MRI methods with at-home computerized face-name letter task (FNLT), a Mnemonic Similarity Task (MST), and a one card learning task (OCL) performed monthly over one year in 76 older participants from the Harvard Aging Brain Study. Higher LC integrity was related to lower MST reaction times at baseline, and lower MST and FNLT reaction times over one year. No significant associations were found with the OCL. Participants with low accuracy practice effect trajectories exhibited low baseline PACC-5 scores, whereas those with higher reaction times over time displayed low LC integrity, high entorhinal, and high amygdala tau at baseline. These findings suggest reaction times measured monthly may be a sensitive measure for early AD-related biomarkers such as LC integrity and tau burden in preclinical AD.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"152 ","pages":"Pages 13-24"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019745802500079X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The locus coeruleus (LC), one of the earliest structures affected by tau pathology in Alzheimer’s disease (AD), plays an important role in modulating arousal and learning. In asymptomatic early stages of AD, more sensitive measures to identify subtle cognitive changes are needed. Previous studies indicate that practice effects can signal initial AD-related learning deficits. Here, we assessed the association between LC integrity and practice effects. We combined dedicated LC-MRI methods with at-home computerized face-name letter task (FNLT), a Mnemonic Similarity Task (MST), and a one card learning task (OCL) performed monthly over one year in 76 older participants from the Harvard Aging Brain Study. Higher LC integrity was related to lower MST reaction times at baseline, and lower MST and FNLT reaction times over one year. No significant associations were found with the OCL. Participants with low accuracy practice effect trajectories exhibited low baseline PACC-5 scores, whereas those with higher reaction times over time displayed low LC integrity, high entorhinal, and high amygdala tau at baseline. These findings suggest reaction times measured monthly may be a sensitive measure for early AD-related biomarkers such as LC integrity and tau burden in preclinical AD.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.