{"title":"Global multi-model projections of green water scarcity risks in rainfed agriculture under 1.5 °C and 3 °C warming","authors":"Lorenzo Rosa, Liyin He","doi":"10.1016/j.agwat.2025.109519","DOIUrl":null,"url":null,"abstract":"<div><div>Rainfed agriculture, sustaining billions globally, faces escalating threats from climate change, yet the role of green water (soil moisture) in quantifying these risks remains critically understudied. We quantify green water scarcity (GWS)—insufficient rainfall to meet crop needs—under 1.5°C and 3°C warming, tracking shifts in risk categories (reliable, risky, highly risky) based on monthly water stress duration. At baseline (1996–2005), 25 % of global rainfed croplands (183 million hectares, Mha) are classified as reliable (≤1 month of GWS annually). However, with 1.5°C and 3°C of global warming, the risk of GWS increases noticeably, resulting in the loss of 70 Mha and 106 Mha of reliable rainfed croplands, respectively, shifting them into risky or highly risky categories. This degradation jeopardizes food production for 0.8 billion people at 1.5°C and 1.2 billion at 3°C, disproportionately impacting regions reliant on rainfed systems. Crucially, 3°C warming doubles the spatial extent of severe GWS compared to 1.5°C, underscoring the nonlinear rise in agricultural risks with temperature. Our analysis reveals that limiting warming to 1.5°C could preserve croplands that feed 400 million people, highlighting the urgent need for climate mitigation. These findings demand integrated water-resilient strategies—prioritizing soil moisture conservation, adaptive crop choices, and sustainable irrigation—to safeguard global food security. By bridging green water dynamics with climate targets, we provide a roadmap for stabilizing rainfed agriculture in a warming world.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"314 ","pages":"Article 109519"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425002331","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Rainfed agriculture, sustaining billions globally, faces escalating threats from climate change, yet the role of green water (soil moisture) in quantifying these risks remains critically understudied. We quantify green water scarcity (GWS)—insufficient rainfall to meet crop needs—under 1.5°C and 3°C warming, tracking shifts in risk categories (reliable, risky, highly risky) based on monthly water stress duration. At baseline (1996–2005), 25 % of global rainfed croplands (183 million hectares, Mha) are classified as reliable (≤1 month of GWS annually). However, with 1.5°C and 3°C of global warming, the risk of GWS increases noticeably, resulting in the loss of 70 Mha and 106 Mha of reliable rainfed croplands, respectively, shifting them into risky or highly risky categories. This degradation jeopardizes food production for 0.8 billion people at 1.5°C and 1.2 billion at 3°C, disproportionately impacting regions reliant on rainfed systems. Crucially, 3°C warming doubles the spatial extent of severe GWS compared to 1.5°C, underscoring the nonlinear rise in agricultural risks with temperature. Our analysis reveals that limiting warming to 1.5°C could preserve croplands that feed 400 million people, highlighting the urgent need for climate mitigation. These findings demand integrated water-resilient strategies—prioritizing soil moisture conservation, adaptive crop choices, and sustainable irrigation—to safeguard global food security. By bridging green water dynamics with climate targets, we provide a roadmap for stabilizing rainfed agriculture in a warming world.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.