Diego Navarro-Cabrera , Juan H. García-Guzmán , Nicolás C. Cruz , Brayan Valencia-Vidal , Niceto R. Luque , Eduardo Ros
{"title":"From data extraction to data-driven dynamic modeling for cobots: A method using multi-objective optimization","authors":"Diego Navarro-Cabrera , Juan H. García-Guzmán , Nicolás C. Cruz , Brayan Valencia-Vidal , Niceto R. Luque , Eduardo Ros","doi":"10.1016/j.robot.2025.105006","DOIUrl":null,"url":null,"abstract":"<div><div>Controlling collaborative robots (cobots) is a new and challenging paradigm within the field of robot motion control and safe human–robot interaction (HRI). The safety measures needed for a reliable interaction between the robot and its environment hinder the use of classical position control methods, pushing researchers to explore alternative motor control techniques, with a strong focus on those rooted in machine learning (ML). While reinforcement learning has emerged as the predominant approach for creating intelligent controllers for cobots, supervised learning represents a promising alternative in developing data-driven model-based ML controllers in a faster and safer way. In this work, we study several aspects of the methodology needed to create a dataset for learning the dynamics of a robot. To this aim, we fine-tune several PD controllers across different benchmark trajectories using multi-objective evolutionary algorithms (MOEAs) that take into account controller accuracy, and compliance in terms of low torques in the framework of safe HRI. We delve into various aspects of the data extraction methodology including the selection and calibration of the MOEAs. We also demonstrate the need to tune controllers individually for each trajectory and how the speed of a trajectory influences both the tuning process and the resulting dynamics of the robot. Finally, we create a novel dataset and validate its use by feeding all the extracted dynamic data into an inverse dynamic robot model and integrating it into a feedforward control loop. Our approach significantly outperforms individual standard PD controllers previously tuned, thus illustrating the effectiveness of the proposed methodology.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"191 ","pages":"Article 105006"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025000922","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling collaborative robots (cobots) is a new and challenging paradigm within the field of robot motion control and safe human–robot interaction (HRI). The safety measures needed for a reliable interaction between the robot and its environment hinder the use of classical position control methods, pushing researchers to explore alternative motor control techniques, with a strong focus on those rooted in machine learning (ML). While reinforcement learning has emerged as the predominant approach for creating intelligent controllers for cobots, supervised learning represents a promising alternative in developing data-driven model-based ML controllers in a faster and safer way. In this work, we study several aspects of the methodology needed to create a dataset for learning the dynamics of a robot. To this aim, we fine-tune several PD controllers across different benchmark trajectories using multi-objective evolutionary algorithms (MOEAs) that take into account controller accuracy, and compliance in terms of low torques in the framework of safe HRI. We delve into various aspects of the data extraction methodology including the selection and calibration of the MOEAs. We also demonstrate the need to tune controllers individually for each trajectory and how the speed of a trajectory influences both the tuning process and the resulting dynamics of the robot. Finally, we create a novel dataset and validate its use by feeding all the extracted dynamic data into an inverse dynamic robot model and integrating it into a feedforward control loop. Our approach significantly outperforms individual standard PD controllers previously tuned, thus illustrating the effectiveness of the proposed methodology.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.