Queue layouts on folded hypercubes

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xin Geng, Yueyang Hao, Weihua Yang
{"title":"Queue layouts on folded hypercubes","authors":"Xin Geng,&nbsp;Yueyang Hao,&nbsp;Weihua Yang","doi":"10.1016/j.dam.2025.04.056","DOIUrl":null,"url":null,"abstract":"<div><div>A queue layout of a graph <span><math><mi>G</mi></math></span> consists of a linear order of its vertices, and a partition of its edges into queues, such that no two edges in the same queue are nested. The queue number <span><math><mrow><mi>q</mi><mi>n</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the minimum number of queues required in a queue layout of <span><math><mi>G</mi></math></span>. A graph <span><math><mi>G</mi></math></span> is a <span><math><mi>q</mi></math></span>-queue graph if <span><math><mrow><mi>q</mi><mi>n</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>q</mi></mrow></math></span>. Gregor et al. in Gregor et al. (2012) showed that the <span><math><mi>n</mi></math></span>-dimensional hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has a layout into <span><math><mrow><mi>n</mi><mo>−</mo><mrow><mo>⌊</mo><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow><mo>⌋</mo></mrow></mrow></math></span> queues for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Pai et al. in Pai et al. (0000) gave several upper bounds when <span><math><mrow><mi>n</mi><mo>≤</mo><mn>7</mn></mrow></math></span>. In particular, <span><math><mrow><mi>q</mi><mi>n</mi><mrow><mo>(</mo><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mn>12</mn></mrow></math></span>. In this work, we generally obtain that <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> has queue number at most <span><math><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 154-158"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002343","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A queue layout of a graph G consists of a linear order of its vertices, and a partition of its edges into queues, such that no two edges in the same queue are nested. The queue number qn(G) is the minimum number of queues required in a queue layout of G. A graph G is a q-queue graph if qn(G)q. Gregor et al. in Gregor et al. (2012) showed that the n-dimensional hypercube Qn has a layout into nlog2n queues for all n1. Pai et al. in Pai et al. (0000) gave several upper bounds when n7. In particular, qn(FQ7)12. In this work, we generally obtain that FQn has queue number at most 2n2 for all n2.
折叠超立方体上的队列布局
图G的队列布局包括其顶点的线性顺序,以及将其边划分为队列,使得同一队列中的两条边不嵌套。队列号qn(G)为G的队列布局所需的最小队列数,当qn(G)≤q时,图G为q队列图。Gregor et al.(2012)在Gregor et al.(2012)中表明,n维超立方体Qn对于所有n≥1,具有n−⌊log2n⌋队列的布局。Pai et al.(0000)中的Pai et al.给出了n≤7时的几个上界。其中,qn(FQ7)≤12。本文一般得出,对于所有n≥2的情况,FQn的队列数最多为2n−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信