Exploring graphs with distinct M-eigenvalues: Product operation, Wronskian vertices, and controllability

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Haiying Shan, Xiaoqi Liu
{"title":"Exploring graphs with distinct M-eigenvalues: Product operation, Wronskian vertices, and controllability","authors":"Haiying Shan,&nbsp;Xiaoqi Liu","doi":"10.1016/j.dam.2025.04.055","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span> denote the set of connected graphs with distinct <span><math><mi>M</mi></math></span>-eigenvalues. This paper explores the <span><math><mi>M</mi></math></span>-spectrum and eigenvectors of a new product <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>C</mi></mrow></msub><mi>H</mi></mrow></math></span> of graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>. We present the necessary and sufficient condition for <span><math><mrow><mi>G</mi><msub><mrow><mo>∘</mo></mrow><mrow><mi>C</mi></mrow></msub><mi>H</mi></mrow></math></span> to have distinct <span><math><mi>M</mi></math></span>-eigenvalues. Specifically, for the rooted product <span><math><mrow><mi>G</mi><mo>∘</mo><mi>H</mi></mrow></math></span>, we present a more concise and precise condition. A key concept, <span><math><mi>M</mi></math></span>-Wronskian vertex, which plays a crucial role in determining graph properties related to separability and construction of specific graph families, is investigated. We propose a novel method for constructing infinite pairs of non-isomorphic <span><math><mi>M</mi></math></span>-cospectral graphs in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>M</mi></mrow></msup></math></span> by leveraging the structural properties of <span><math><mi>M</mi></math></span>-Wronskian vertex. Moreover, the necessary and sufficient condition for <span><math><mrow><mi>G</mi><mo>∘</mo><mi>H</mi></mrow></math></span> to be <span><math><mi>M</mi></math></span>-controllable is given.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 125-136"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500232X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let GM denote the set of connected graphs with distinct M-eigenvalues. This paper explores the M-spectrum and eigenvectors of a new product GCH of graphs G and H. We present the necessary and sufficient condition for GCH to have distinct M-eigenvalues. Specifically, for the rooted product GH, we present a more concise and precise condition. A key concept, M-Wronskian vertex, which plays a crucial role in determining graph properties related to separability and construction of specific graph families, is investigated. We propose a novel method for constructing infinite pairs of non-isomorphic M-cospectral graphs in GM by leveraging the structural properties of M-Wronskian vertex. Moreover, the necessary and sufficient condition for GH to be M-controllable is given.
探索具有不同m特征值的图:乘积运算,朗斯基顶点和可控性
设GM表示具有不同m特征值的连通图的集合。本文探讨了图G和图h的新积G°CH的m谱和特征向量,给出了G°CH有不同m特征值的充分必要条件。具体地说,对于根积G°H,我们给出了一个更简洁和精确的条件。研究了一个关键概念——m -朗斯基顶点,它在确定图族的可分性和特定图族的构造方面起着至关重要的作用。利用m -朗斯基顶点的结构性质,提出了一种构造无限对非同构m -共谱图的新方法。并给出了G°H m可控的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信